Let \(x_1, x_2, \ldots, x_{n - 1}\), be the zeroes different from 1 of the polynomial \(P(x) = x^n -1, n \geq 2\).

Prove that

\[\frac {1}{1 - x_1} + \frac {1}{1 - x_2} + \ldots + \frac {1}{1 - x_{n - 1}} = \frac {n - 1}{2}.\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThe key are the RoU. One you do that, it's super simple. More later.

Log in to reply

Later? Finn, you have some unfinished work. :P

Log in to reply

Oh shoot. Thanks for reminding me!

Log in to reply