×

# Simple note

If $$x + y \ = \ 3$$ and $$x^{3} + y^{3} \ = \ 25$$, what is $$x^{2} + y^{2}$$

Note by Paulo Carlos
2 years, 7 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Cubing the first equation, $$x^3+3x^2y+3xy^2+y^3=27=>3xy(x+y)=27-(x^3+y^3)=2$$, so $$xy=\frac{2}{9}$$. Now, note that $$x^2+y^2=(x+y)^2-2xy=3^2-2\times\frac{2}{9}=\boxed{\frac{77}{9}}$$.

- 2 years, 7 months ago

Just for the sake of mentioning, one can overkill this problem using Newton's Identities:

$x^2+y^2=(x+y)^2-2xy\implies x^2+y^2=9-2xy$

$x^3+y^3=(x+y)(x^2+y^2)-xy(x+y)\implies 25=3(x^2+y^2-xy)\implies 25=3(9-2xy-xy)\implies xy=\frac 29$

We resubstitute this value of $$xy$$ back to our first equation to get $$x^2+y^2=\dfrac{77}{9}$$

- 2 years, 7 months ago

I think you can perhaps use $$\rightarrow$$ OR $$\Rightarrow$$ instead of => .

The $$\LaTeX$$ codes are \rightarrow and \Rightarrow respectively .

- 2 years, 7 months ago

$x^3+y^3 = (x+y)(x^2-xy+y^2) \\\Rightarrow 25 = 3(x^2-xy+y^2) \\\Rightarrow x^2-xy+y^2=\dfrac{25}{3} \dots (1) \\\Rightarrow (x+y)^2=3^2 \\\Rightarrow x^2+2xy+y^2=9 \\ \Rightarrow \dfrac{x^2}{2} + xy + \dfrac{y^2}{2} = \dfrac{9}{2} \dots (2)$

Adding $$(1),(2)$$ , we have:

$\dfrac{3x^2}{2}+\dfrac{3y^2}{2}= \dfrac{25}{3}+\dfrac{9}{2} \\\Rightarrow \dfrac{3}{2}(x^2+y^2)= \dfrac{77}{6} \\ \Rightarrow \boxed{x^2+y^2= \dfrac{77}{9}}$

- 2 years, 7 months ago