\( \sin x < x < \tan x \)

Show that for \( 0 < x < \frac{\pi}{2} \), we have

\[ \sin x < x < \tan x .\]


This is a list of Calculus proof based problems that I like. Please avoid posting complete solutions, so that others can work on it.

Note by Calvin Lin
4 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

On \([0,\pi/2]\), consider the two functions : \(f(x)=\sin x-x\), and : \(g(x)=\tan x -x\).

\(f'(x)=\cos x -1\leq 0\), which means that \(f(x)\leq f(0)=0\).

And : \(g'(x)=\sec^2 x -1\leq 0\), which means that \(g(x)\geq g(0)=0\).

And since these two function are not constant on any open interval we get sharp inequalities on the open interval \((0,\pi/2)\), which get us to what we want.

Haroun Meghaichi - 4 years, 3 months ago

Log in to reply

Do you know a non-calculus approach to this problem?

Calvin Lin Staff - 4 years, 2 months ago

Log in to reply

By looking at the graphs of sinx , tanx and x we can say it is true.

Akash Shah - 4 years, 2 months ago

Log in to reply

I can't draw a circle here, the whole idea is for a point \(M\) on the first quadrant (and not on \((1,0)\) ) of the unit circle, the arc from \((1,0)\) to \(M\) is longer than the distance between \(M\) and the x-axis which gives us \(\sin x< x\). A similar approach would be with the other side of the inequality.

Haroun Meghaichi - 4 years, 2 months ago

Log in to reply

We can use Maclaurin expansion of sinx.

Sambit Senapati - 4 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...