# Slopes of tangents at roots

Claim: If a polynomial of degree $n$ has real roots $x_1, x_2 , \ldots , x_n$ such that $x_1 < x_2 < \cdots < x_n$. If the slopes of tangents at $x_i$ are $m_i$, then $\dfrac1{m_1} + \dfrac1{m_2 } + \cdots + \dfrac1{m_n} = 0 .$

Proof:

Let $\displaystyle P(x) = a_n x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + a_{n-3}x^{n-3} + \cdots + a_0$ have roots $x_1, x_2, x_3,\cdots, x_n$.

Then we can also write it as - $\displaystyle P(x) = a_n (x-x_1) (x-x_2) (x-x_3) (x - x_4) \cdots (x - x_n)$

Let $a = a_n$,

$\displaystyle P'(x) = a (x - x_2)(x - x_3) \cdots (x - x_n) + a (x - x_1)(x - x_3) \cdots (x - x_n) + \cdots + a (x - x_1)(x - x_2) \cdots (x - x_{n-1})$

Thus,

$\displaystyle P'(x_1) = m_1 = a (x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)$

$\displaystyle P'(x_2) = m_2 = a (x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)$

$\vdots$

$\displaystyle P'(x_n) = m_n = a (x_n - x_1)(x_n - x_2) \cdots (x_n - x_{n-1})$

$\displaystyle \frac{1}{m_1} = \frac{1}{a (x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)}$

$\displaystyle \frac{1}{m_2} = \frac{1}{a (x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)}$

$\vdots$

$\displaystyle \frac{1}{m_n} = \frac{1}{a (x_n - x_1)(x_n - x_2) \cdots (x_n - x_{n-1})}$

Let's take $\frac{1}{m_1}$ and try to expand it using partial fractions.

$\displaystyle \frac{1}{m_1} = \frac{A_2}{a (x_1 - x_2)} + \frac{A_3}{a (x_1 - x_3)} + \cdots + \frac{A_n}{a (x_1 - x_n)}$

We can find $A_i$s using Partial fractions limit method.

$A_2 = \frac{1}{(x_2 - x_3)(x_2 - x_4)\cdots (x_2 - x_n)}$ and so on.

Our expression for $\frac{1}{m_1}$ therefore becomes -

$\displaystyle \frac{1}{m_1} = \frac{\frac{1}{(x_2 - x_3)(x_2 - x_4)\ldots (x_2 - x_n)}}{a (x_1 - x_2)} + \frac{\frac{1}{(x_3 - x_2)(x_3 - x_4)\ldots (x_3 - x_n)}}{a (x_1 - x_3)} + \ldots + \frac{\frac{1}{(x_n - x_2)(x_n - x_3)\ldots (x_n - x_{n-1})}}{a (x_1 - x_n)}$

Observe carefully and one will get

$\displaystyle \frac{1}{m_1} = \frac{-1}{m_2} + \frac{-1}{m_3} + \frac{-1}{m_4} + \cdots + \frac{-1}{m_n}$

$\large \text{QED}$ Note by Kartik Sharma
3 years, 10 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

What is the goal that you're trying to achieve? It seems like you want to either 1) Prove the claim or 2) Explain how you arrived at this claim. The styles of writing for these 2 are slightly different. For example, as a proof, the statement of "experience tells us that $\frac{1}{m_i}$ is a good way to go" seems really weird, since that is exactly what the claim needs. If you are clear on that, you can clean up the writing and make it much easier for your audience to understand what you're saying.

Concerns that I have:

1. The "substitute $x_1 = x_2$" needs to be justified. They are distinct constants as you stated in the assumption, so I don't understand what you mean by "substitute this number for this distinct number". What are you actually doing here?

2. In the event that you want to motivate arriving at the claim, you should check the necessity of the conditions. I believe that the assumption of distinct roots and real roots are not needed, as long as we count with multiplicity.

Staff - 3 years, 9 months ago

I have fixed some of it. One concern I have is of double roots. And real roots are required otherwise slopes of tangents do not make sense(at least to me).

- 3 years, 9 months ago

Tangent is still the same for complex numbers, namely $P'(x_i)$.

Ah, I see that repeated roots could be an issue given that $P'(x_i) = 0$, so the inverse of that doesn't make sense. That would be a good thing for you to work through in the proof, and see if we do need $x_i \neq x_j$, or what the equivalent statement could be fore repeated roots.

There is very little difference in using real numbers vs complex numbers (BUT not to be confused with complex analysis).

Staff - 3 years, 9 months ago

Is it already discovered? I discovered it while solving a problem on Brilliant.

Maybe there is a geometric proof as well by looking at the final result.

- 3 years, 10 months ago

@Calvin Lin @Michael Mendrin @Pi Han Goh Can you please check its validity ?

- 3 years, 9 months ago

Yes. It's correct.

For a shorter proof: Consider $\dfrac d{dx} ( \ln(P(x))$. Think about the generalized version of the chain rule followed by finding the coefficients of $A_n$ via limit method of partial fraction.

I think this is a very nice setup. Maybe you can construct up a problem that utilizes this fact. Don't you think?

- 3 years, 9 months ago

Yes, that's very true. I should have thought of easier methods of proof before posting it.

Yeah, I am working on it. Nothing much spectacular has come up yet. But I will surely make one. Thanks! Anyways, if you get any good idea for a problem, do share it !

- 3 years, 9 months ago