Waste less time on Facebook — follow Brilliant.
×

SMO 2013 Round 2 Q4

In the following \(6 \times 6\) array one can choose any \(k \times k\) subarray with \(1<k \leq 6 \) and add 1 to all its entries. Is it possible to perform the operation a finite number of times so that all the entries in the array are multiples of 3? \[ \begin{bmatrix} 2&0&1&0&2&0 \\ 0&2&0&1&2&0 \\ 1&0&2&0&2&0 \\ 0&1&0&2&2&0 \\ 1&1&1&1&2&0 \\ 0&0&0&0&0&0 \\ \end{bmatrix} \]

How to do this question? Please help. Thanks!

Note by Timothy Wan
1 year, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Hint: Find an Invariant. What property must stay the same after any change?

Calvin Lin Staff - 1 year, 11 months ago

Log in to reply

Update: My original idea failed to work.

I would be interested in a solution.

Calvin Lin Staff - 1 year, 11 months ago

Log in to reply

No, because following this Invariant principle we know that we will always have three different numbers x, x + 1 and x + 2. Since the differences between the numbers is 1 and 2, and not 3, this is not possible!

Brilliant Member - 1 year, 11 months ago

Log in to reply

How about considering that we just need to make the whole array's elements 0 (mod 3), so we wrote 2 as -1? Well that help here? Sorry I'm not much of a helper :(

Timothy Wan - 1 year, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...