Solution hunt

Find the number of solutions of 1) 2^x + 3^x + 4^x - 5^x = 0. 2) x^2 - 4 - [x] = 0 , Where [.] denotes the Greatest integer function. Have fun fellas and don't forget to provide an explanation!

Note by Sridhar Thiagarajan
5 years, 1 month ago

No vote yet
2 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

write [x] = x - {x} now, x^2 - 4 = x - {x} or x^2-x-4 = -{x} now, -{x} belongs to (-1,0], hence find the intervals of values of x such that x^2 - x -4 also belongs to(-1,0] you will find that the values are aproxx [-1.56,-1.3) or (2.3,2.56] hence the values are such that [x] = -2 or 2, if [x] = -2, x= -( 2)^1/2, and if [x] = 2, x = (6)^1/2 Hence, 2 SOLUTIONS

Jatin Yadav - 5 years ago

Log in to reply

1) \(2^x + 3^x + 4^x = 5^x\)

Suppose x is large. Then dividing both sides by \(5^x\) makes \((\frac{2}{5})^5+(\frac{3}{5})^5+(\frac{4}{5})^5=1\)

This makes the LHS a strictly decreasing function, RHS stays constant as 1, hence there is only 1 solution.

Obviously 2<x<3. With a calculator (which I think there is another method) it is easy to get a close approximation of the answer.

Clarence Chew - 5 years, 1 month ago

Log in to reply

the second line raises the fraction to 5, but it should be x.

Shourya Pandey - 5 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...