\[ \large \tan^2\frac \theta2= \frac{1-\cos\theta}{1+\cos\theta} \]

Prove the trigonometric identity above.

\[ \large \tan^2\frac \theta2= \frac{1-\cos\theta}{1+\cos\theta} \]

Prove the trigonometric identity above.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest\(\large \frac{1- \cos \theta}{1 + \cos \theta}= \frac{1- (1-2 \sin^2 \frac{\theta}{2})}{1+(2 \cos^2 \frac{\theta}{2} -1)}= \frac{2 \sin ^2 \frac{\theta}{2}}{2 \cos ^2 \frac{\theta}{2}}= \tan^2 \frac{\theta}{2} \) – Ravi Dwivedi · 1 year, 9 months ago

Log in to reply

Hint: \( \cos\theta = 1 - 2\sin^2\frac\theta2 = 2\cos^2\frac\theta2-1\). – Pi Han Goh · 1 year, 9 months ago

Log in to reply