Let \(x, y, z\) be positive real numbers . Prove that:

\[ \displaystyle \frac{x^{y+z}}{(y+z)^2}+\frac{y^{z+x}}{(z+x)^2}+\frac{z^{x+y}}{(x+y)^2}\geq \frac{3}{4} \]

I always confused how can I solve inequality with variable-power on it. Appreciate your help to solve this problem for sure :)

## Comments

Sort by:

TopNewestI thought of this on my own but I saw that Cody Johnson has already shared it.

So, showing that \(f\) is convex for the interval [0,S] ( Take second-order derivative or the 'definition' method)

Applying Jensen's inequality for \(f(a) = \frac{{a}^{S-a}}{{S-a}^{2}}\),

\(f(x) + f(y) + f(z) \geq 3\frac{x+y+z}{3}\)

\(\geq 3\frac{S}{3}\)

\(\geq 3\frac{{(\frac{S}{3})}^{\frac{2S}{3}}}{{\frac{2S}{3}}^{2}}\)

\(\geq 3\frac{{(\frac{S}{3})}^{\frac{2S-6}{3}}}{4}\) --------- 1

Now, we need to find the minimum value of \({(\frac{S}{3})}^{\frac{2S-6}{3}}\). Taking derivative of it w.r.t. S and equating to 0,

\({(\frac{S}{3})}^{\frac{2S-6}{3}}(\frac{2S-6}{3S} + \frac{2}{3}ln(\frac{S}{3})) = 0\) [ln(b) is the logarithm base e of b]

So, either \({(\frac{S}{3})}^{\frac{2S-6}{3}} = 0\), which is not possible as \(S > 0\)

or \(\frac{2S-6}{3S} + \frac{2}{3}ln(\frac{S}{3}) = 0\)

After some bashing, this can be written as,

\(S(ln(\frac{S}{3})) = 3 - S \Rightarrow {e}^{c} = \frac{e}{c}\) [for c = \(\frac{3}{S}\)], which is only possible for c = 1.

Hence, \(S = 3\).

Substituting in 1,

\(f(x) + f(y) + f(z) \geq 3\frac{{(\frac{3}{3})}^{\frac{2*3-6}{3}}}{4}\)

which is just

\(f(x) + f(y) + f(z) \geq \frac{3}{4}\)

Log in to reply

nice solution @Kartik Sharma

Log in to reply

@Cody Johnson I hope I didn't copy and if I did, then I really didn't mean it!

Log in to reply

Wow, this is so obvious now that I read your solution... :(

Log in to reply

@Deepanshu Gupta @Sandeep Bhardwaj @Sanjeet Raria @Pranjal Jain @abdulrahman khaled

Log in to reply

Let \(s=x+y+z\) and \(f(x)=\frac{x^{s-x}}{(s-x)^2}\). Confirm that \(f\) is convex on \(0<x<s\). Apply Jensen's inequality.

I'm not sure if this is correct, but I'm pretty darn sure… can't confirm because I'm on my phone

Log in to reply

We know that \(AM \ge GM\) and they are equal when \(x=y=z=1\). Therefore,

\[\dfrac {\dfrac {x^{y+z}}{(y+z)^2} + \dfrac {y^{z+x}}{(z+x)^2} + \dfrac {z^{x+y}}{(x+y)^2} } {3} \ge \sqrt [3] {\left( \dfrac {x^{y+z}} {(y+z)^2} \right) \left( \dfrac {y^{z+x}}{(z+x)^2} \right) \left( \dfrac {z^{x+y}}{(x+y)^2} \right) }\]

\[\dfrac {x^{y+z}}{(y+z)^2} + \dfrac {y^{z+x}}{(z+x)^2} + \dfrac {z^{x+y}}{(x+y)^2} \ge 3 \sqrt [3] {\dfrac {x^{y+z}y^{z+x} z^{x+y}} {(x+y)^2(y+z)^2(z+x)^2} }\]

\[\dfrac {x^{y+z}}{(y+z)^2} + \dfrac {y^{z+x}}{(z+x)^2} + \dfrac {z^{x+y}}{(x+y)^2} \ge \dfrac {3x^{\frac {1}{3} (y+z)}y^{\frac {1}{3} (z+x)} z^{\frac {1}{3} (x+y)}} {[(x+y)(y+z)(z+x)]^\frac{2}{3}} \]

Equality occurs when \(x=y=z=1\):

\[\Rightarrow \dfrac {x^{y+z}}{(y+z)^2} + \dfrac {y^{z+x}}{(z+x)^2} + \dfrac {z^{x+y}}{(x+y)^2} \ge \dfrac {3\dot{} 1\dot{}1\dot{}1} {[2\dot{}2\dot{}2]^\frac{2}{3}} = \dfrac {3}{4}\]

Log in to reply

I don't see how you proved the inequality... You just manipulated it a bit and then claimed that equality happens at \(x=y=z=1\).

@Mardokay Mosazghi I'll try to solve it. I don't usually tackle problems with variable exponents like this one though.

EDIT: I honestly have no idea how to prove this. Even when assuming \(x=y=z\), it's pretty non-trivial to prove that the minimum is when \(x=y=z=1\). I'm guessing that this inequality cannot be proved using elementary techniques.

Log in to reply

Uhm Let a = x + z, b = y + z, and c = x + y?

Log in to reply

Log in to reply

Daniel, you are right. I thought I was using the theorem. Can anyone help?

Log in to reply

Yes its easy u put all x.y.z 1 to prove equality and gv counter example by taking all zero which is not a poitive integer. Hence inequality is not proved on other then positive.. And as it is a polynomial it will form a ring hence close under both operation so inequality is proved..

Log in to reply

Put x =1 and then 0 it means limit are satisfying. Rest I don't know

Log in to reply

why do you do this for x only, please elaborate.

Log in to reply

Check now

Log in to reply

@Daniel Liu Can you help us with this problem?

Log in to reply