What is wrong with this proof or is it in fact it is valid?

\( \large \sqrt{i} = (i)^{\frac{1}{2}} = (i)^{\frac{4}{8}} = \sqrt[8]{i^{4}} = \sqrt[8]{1} = \)

\(1, -1, i, -i, \sqrt{i}, -\sqrt{i} \sqrt{-i} \text{and} -\sqrt{-i}.\)

Does that mean that all 8 solutions are solutions of \(\sqrt{i}\)?

I know that \(\sqrt{i}\) can be expressed as \(\pm\frac{1}{\sqrt{2}}\times(1+i)\) but my questions are:

1) Which of the 8 solutions are invalid and why are they invalid?

2) Is it possible of \(\sqrt{i}\) to have more than 2 solutions? If so, what are they?

3) Is it possible for \(\sqrt{i}\) to have any solutions where there is a real part (in addition to the 2 given)?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestFinding the square roots of \(i\) is the same thing as solving the equation \(x^2=i\) in complex numbers.

Now, what you did is raise both sides of this equation to the fourth power to get \(x^8=1\). While it is true that if \(x^2=i\), then \(x^8=1\), but the converse is not always true. In other words, when you are raising the equation to a power, you're introducing extraneous solutions.

Take this for example. If \(x=4\), then \(x^2=16\). But \(x^2=16\) implies \(x\) is equal to either \(4\) or \(-4\). So squaring gave you something (\(x=-4\)) that's not a solution to the orginal equation.

The fundamental theorem of algebra ensures that an \(n\)-degree polynomial with complex coefficients can have at most \(n\) complex roots. So that means a complex number can not have more than two complex square roots. But higher dimensional numbers (like quaternions) are a different story.

Log in to reply

As \(x=4\) and \(x^2=16\) aren't same, \(x^2=i\) and \(\sqrt{i} \) aren't same too.

Solving \(x^2=i\), we get \(x=e^{\frac{i\pi} {4}}=\sqrt[4]{-1},e^{-\frac{3i\pi}{4}}\).

But \(\sqrt{i} \) means principal root of \(i\) which is \(\sqrt[4]{-1}\)

Log in to reply

It is possible to extend the definition of a principle square root to an arbitrary complex number, but it's usually not done because it is not as useful as the principal square root of a non-negative real. (The definition you're using is something like this: the principal square root is the one with the positive real part or the one that lies in the right-complex-half-plane, or \(\sqrt{z}=\sqrt{|z|}\frac{z+|z|}{|z+|z||}\)) That's why the principal square root operator, \(\sqrt{\quad}\) is generally not used on a general complex number. It doesn't offer us much to talk about a particular square root of a general complex number.

The OP was actually looking for the square roots (plural) of \(e^{i\frac{\pi}{2}}\) [even though they didn't state it explicitly] and I was aiming to address that.

Log in to reply

Log in to reply

Ok thanks for clearing that up. I'll look into some quaternions...

Log in to reply

It can be use in hard forms

Log in to reply