Waste less time on Facebook — follow Brilliant.
×

Sum of Digits

Find the sum of digits of \(10^{2014} - 2014\).

Note by Dev Sharma
1 year, 11 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

There'll be 2010 9's followed by 7, 9 , 8, 6. So the sum of digits becomes 18120 Vishnu C · 1 year, 11 months ago

Log in to reply

See there is a pattern \[10^4 - 2014 = 7986\] \[ 10^5 - 2014 = 97986 \] \[10^6 - 2014 = 997986 \] \[10^7 - 2014 = 9997986 \] Like this. \[10^n - 2014 =\underbrace{(9999\ldots)}_{(n-4)\quad times}7986 \] Thus, \[10^{2014} - 2014 = \underbrace{(9999\ldots)}_{(2010)\quad times}7986\] Thus sum of digits = \[2010 * 9 + 7 + 9 + 8 + 6 = 18120 \] Svatejas Shivakumar · 1 year, 10 months ago

Log in to reply

@Svatejas Shivakumar nice observation Dev Sharma · 1 year, 10 months ago

Log in to reply

@Dev Sharma thank you Svatejas Shivakumar · 1 year, 10 months ago

Log in to reply

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...