# Summation Series to Product Series Part 1.

Here's something interesting I found out last year. I don't know if its been done before but I strongly suspect it has.

Consider a summation series of form $S(n) = \sum_{k = 1}^{k = n}\frac{f(k)}{k!}$ such that $$f(1) = 1$$.

Now let's do something unusual and create the following sequence starting with the term $$a_2 = 2$$ and then $$a_{k+1} = (k + 1)(a_k + f(k))$$ for all $$k > 2$$.

Finally we'll focus our attention on the following product series $P(n) = \prod_{k=2}^{k=n} ( 1 + \frac{f(k)}{a_k})$ for all $$n > 2$$.

We'll show that $$S(n) = P(n)$$ for all $$n > 2$$.

Proof : By induction on n. We'll start with the base case. Base Case: $$n = 2$$

We have $$P(2) = 1 + \frac{f(2)}{a_2} = 1 + \frac{f(2)}{2} =\frac{f(1)}{1} + \frac{f(2)}{2} = S(2)$$ as required.

Induction Step

This part is a quite long, so we'll break it down into 3 parts.

Part 1 : Re-arranging the Factors of the Product Series

We can write each factor from our product series as \begin{align} 1 + \frac{f(k)}{a_k} &= \frac{a_k}{a_k} + \frac{f(k)}{a_k} \\&= \frac{a_k + f(k)}{a_k} \\&= \frac{a_{k+1}}{(k+1)a_k} \end{align} by using the definition of our sequence.

Part 2 : Re-writing our Product Series

Now we have that \begin{align} \prod_{k = 2}^{k = n} (1 + \frac{f(k)}{a_k}) &= \frac{a_{3}}{(3)a_2} \times \frac{a_{4}}{(4)a_3} \times ...\times \frac{a_{n+1}}{(n+1)a_n} \\ &= \frac{a_{n+1}}{a_2 \times 3 \times 4 \times ... \times n \times (n+1)} \\&=\frac{a_{n+1}}{(n+1)!} \end{align}

Part 3 : Final Step

Suppose $$P(q) = S(q)$$ for some natural number $$q$$.

Then\begin{align} P(q+1) &= P(q)(1 + \frac{f(q+1)}{a_{q+1}}) \\&= P(q) + \frac{f(q+1)}{a_{q+1}}\times\frac{a_{q+1}}{(q+1)!} \\&= P(q) + \frac{f(q+1)}{(q+1)!} \\&= T(q) + \frac{f(q+1)}{(q+1)!} = T(q+1) \end{align} as required.

End of Proof

We'll go through some of the consequences of this in the next note!

Note by Roberto Nicolaides
3 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

There are no comments in this discussion.

×