Temperature for small systems

From the Maxwell-Boltzmann distribution we know that :

\[v_{\text{rms}}^{2}=\frac{3RT}{M}\]

Labelling all particles of the gas with an index we know that :

vrms2=i=1nvi2nv_{\text{rms}}^{2}=\dfrac{\displaystyle\sum_{i=1}^{n} v_i^{2}}{n}

where n is the number of particles in the gas

So making TT the subject of the equation we get :

T=Mi=1nvi23RnT= \dfrac{\displaystyle M \sum_{i=1}^{n} v_i^{2}}{3Rn}

This is assuming the case that the system containing our gas is not in motion, if in motion we should be taking the velocities deviating from the velocity of the centre of mass of the gas

Keeping the average velocity as v\overline v

Our new equation to combat moving systems should be

T=Mi=1n(viv)23RnT= \dfrac{\displaystyle M \sum_{i=1}^{n} (v_i-\overline v)^{2}}{3Rn}

Both vi and v are to be treated as vectors\text{Both } v_i \text{ and } \overline v \text{ are to be treated as vectors}

This can be applied to smaller systems easily, so I was wondering whether this is a good argument or not, as I have heard you can’t define a temperature for smaller systems

If true, will such systems obey the law of thermodynamics, as in my sight there are just statistical laws which are more true as the size of the system increases

Note by Jason Gomez
4 months, 4 weeks ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Sort by:

Top Newest

@Siddharth Chakravarty Have any idea about this? Whether it could be right/wrong, or know someone who will know ?

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

Im still yet to complete Thermodynamics completely, I cant mention the people I know ugh.

Siddharth Chakravarty - 4 months, 3 weeks ago

Log in to reply

Why?

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

Is it because you know no one who would be interested in this, or is it because the people you know(who would know about this) won’t be interested in this

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

No, no actually when we try to mention a person we can see the name of the person pop-up, and thus clicking on it, the person gets mentioned but when I am trying to mention those people I can't see their name pop-up.

Siddharth Chakravarty - 4 months, 3 weeks ago

Log in to reply

@Siddharth Chakravarty Yeah you need to find them somewhere they commented and use Frisk’s technique, that is why I made a new note for keeping mention ids

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

@Jason Gomez now that is gonna be a long process, I will give you the names rather Josh Silverman, Aryan Sanghi, Alakh Bhattacharya, Agnishom Chattopadhaya, etc.

Siddharth Chakravarty - 4 months, 3 weeks ago

Log in to reply

@Siddharth Chakravarty Ok I think I know where to find Aryan Sanghi and Alakh Bhattacharya

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

@Siddharth Chakravarty Couldn’t find the others

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

@Siddharth Chakravarty Who do you want to mention btw?

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

@Aryan Sanghi

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

The laws of thermodynamics are universal, they could be applied to every system, big or small.

Considering the last equation you wrote for TT, it is based on Kinetic Theory of Gases which is applicable only for large systems, so the last equation might differ a good amount from experimental value if applied to small systems. Also, temperature is defined for all systems, big or small, but the only problem is that Kinetic theory of gases is not valid for small systems, so you can't define temperature for small systems using KTG. Hope it helps. :)

Aryan Sanghi - 4 months, 3 weeks ago

Log in to reply

Thank you, this helps a lot

Jason Gomez - 4 months, 3 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...