Waste less time on Facebook — follow Brilliant.
×

Testing ..

\[\begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation}\]

\(\alpha, A, \beta, B, \gamma, \Gamma, \pi, \Pi, \phi, \varphi, \Phi\)

\(\lim_{x \to \infty} \exp(-x) = 0\)

\(x \equiv a \pmod b\)

\(k_{n+1} = n^2 + k_n^2 - k_{n-1}\)

\(\frac{n!}{k!(n-k)!} = \binom{n}{k}\)

\(\frac{\frac{1}{x}+\frac{1}{y}}{y-z}\)

\( \begin{equation} \frac{ \begin{array}[b]{r} \left( x_1 x_2 \right)\\ \times \left( x'_1 x'_2 \right) \end{array} }{ \left( y_1y_2y_3y_4 \right) } \end{equation}\)

\(\sqrt[n]{1+x+x^2+x^3+\ldots}\)

\(\sum_{i=1}^{10} t_i\)

\(\int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x\)

\( \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix}\)

\( A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}\)

\[ f(n) = \left\{ \begin{array}{l l} n/2 & \quad \text{if $n$ is even}\\ -(n+1)/2 & \quad \text{if $n$ is odd} \end{array} \right.\]

Note by JohnDonnie Celestre
2 years, 11 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

Haha, good idea. Finn Hulse · 2 years, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...