Waste less time on Facebook — follow Brilliant.
×

That's... impossible!

Prove \( 0=1 \) \[ -20=-20 \] \[ 16-36=25-45 \] \[ 4^2-4\times 9=5^2-5\times9 \] \[ 4^2-4\times 9+\frac{81}{4}=5^2-5\times9+\frac{81}{4} \] \[ 4^2-2\times4\times\frac{9}{2}+\left(\frac{9}{2}\right)^2=5^2-2\times 5\times \frac{9}{2}+\left(\frac{9}{2}\right)^2 \] \[ \left(4-\frac{9}{2}\right)^2=\left(5-\frac{9}{2}\right)^2 \] \[ \Rightarrow 4-\frac{9}{2}=5-\frac{9}{2} \] \[ \Rightarrow 0=1 \]

WHAT? Mistakes?

Source

Note by Adam Phúc Nguyễn
2 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\[{ (4-\frac { 9 }{ 2 } ) }^{ 2 }={ (5-\frac { 9 }{ 2 } ) }^{ 2 }\Rightarrow |4-\frac { 9 }{ 2 } |=|5-\frac { 9 }{ 2 } |\Rightarrow \frac { 9 }{ 2 } -4=5-\frac { 9 }{ 2 } \], not \[{ (4-\frac { 9 }{ 2 } ) }^{ 2 }={ (5-\frac { 9 }{ 2 } ) }^{ 2 }\Rightarrow 4-\frac { 9 }{ 2 } =5-\frac { 9 }{ 2 } \Rightarrow 0=1\]

Trung Đặng Đoàn Đức - 2 years, 1 month ago

Log in to reply

Ohhhhhh!!! Great answer!

Adam Phúc Nguyễn - 2 years, 1 month ago

Log in to reply

Great ..lol !!!

Rohit Udaiwal - 2 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...