# That's... impossible!

Prove $$0=1$$ $-20=-20$ $16-36=25-45$ $4^2-4\times 9=5^2-5\times9$ $4^2-4\times 9+\frac{81}{4}=5^2-5\times9+\frac{81}{4}$ $4^2-2\times4\times\frac{9}{2}+\left(\frac{9}{2}\right)^2=5^2-2\times 5\times \frac{9}{2}+\left(\frac{9}{2}\right)^2$ $\left(4-\frac{9}{2}\right)^2=\left(5-\frac{9}{2}\right)^2$ $\Rightarrow 4-\frac{9}{2}=5-\frac{9}{2}$ $\Rightarrow 0=1$

WHAT? Mistakes?

Source

Note by Adam Phúc Nguyễn
2 years, 9 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

${ (4-\frac { 9 }{ 2 } ) }^{ 2 }={ (5-\frac { 9 }{ 2 } ) }^{ 2 }\Rightarrow |4-\frac { 9 }{ 2 } |=|5-\frac { 9 }{ 2 } |\Rightarrow \frac { 9 }{ 2 } -4=5-\frac { 9 }{ 2 }$, not ${ (4-\frac { 9 }{ 2 } ) }^{ 2 }={ (5-\frac { 9 }{ 2 } ) }^{ 2 }\Rightarrow 4-\frac { 9 }{ 2 } =5-\frac { 9 }{ 2 } \Rightarrow 0=1$

- 2 years, 9 months ago

- 2 years, 9 months ago

Great ..lol !!!

- 2 years, 9 months ago