Main post link -> http://blog.brilliant.org/2013/02/17/the-discovery-of-the-number-e/

When most of us are first taught about the number , we are told that it is an irrational, transcendental number that is about 2.7182. Most people simply learn to manipulate . High school classes rarely mention where comes from. It is usually introduced when learning about exponents and logarithms as a “special” base that you will use a lot down the road. Early in high school I remember asking a teacher what was. I received the usual circular answer, that is the base of the natural logarithm which in turn is the logarithm of an exponent raised to the base of . This answer did not satisfy me, but I was told that I had to wait for calculus to learn other ways of approaching it’s definition...

Read the rest over at the blog.

Feel free to share your thoughts!

No vote yet

4 votes

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHow would you show that \(e\) is irrational?

Note that this will heavily depend on your definition of \(e\).

Log in to reply

Its simple . We write e=1+1/1!+1/2!......... and will suppose that e is rational . then e will be of form p/q . and it will be easy contradiction then

Log in to reply

I tried and failed to share the blog in facebook. I guess the button right there at the right corner of the blog was for sharing on facebook!

Log in to reply