The theorem

The Remainder-Factor Theorem tells us that:

Let p(x) be an \(n^{th}\) degree polynomial. If \(p(x)\) is divided by \(x-c\), the residue (or remainder) left is \(p(c)\).

Proof: \(p(x)\) can be rewriten as \((x-c)q(x) + r\) when \(q(x)\) is an \((n-1)^{th}\) degree polynomial and \(r\) is the remainder. Thus \(p(c) = r\). Hence, proved.

The Theorem can be applied to the following:

\( (x-c)|P(x) \leftrightarrow P(c) = 0\)

Sorry for ugly formatting. I hope at least you get the idea.

Note by Sanchayapol Lewgasamsarn
3 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

That was helpful..... Thanks.

Salmaan Shahid - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...