×

# The Zeta Function: Finding a general formula Part 2

From the first part we got to

$$\pi.s\frac{\cos \pi.s}{\sin \pi.s}=1+\displaystyle\sum_{k=1}^{\infty} \frac{1}{(1-\frac{s^2}{k^2})}.-\frac{2s^2}{k^2}$$

Note that $$\frac{\cos \pi.s}{\sin \pi.s}= cotan (\pi.s)$$.

We can take the -2 up front and use the geometric series formula to obtain:

$$\displaystyle\pi.s.cotan(\pi.s)=$$

$$=1-2.\displaystyle\sum_{k=1}^{\infty} [1+\frac{s^2}{k^2}+\frac{s^4}{k^4}...].\frac{s^2}{k^2}=1-2.\sum_{k=1}^{\infty} (\sum_{n=1}^{\infty} (\frac{s^2}{k^2})^n)=$$

$$=1-2.\displaystyle\sum_{n=1}^{\infty} \frac{s^{2n}}{1^{2n}}+\frac{s^{2n}}{2^{2n}}...=1-2.\sum_{n=1}^{\infty} \zeta (2n).s^{2n}$$

Now let's try to find a different representation of $$\pi.s.cotan(\pi.s)$$

$$\pi.s.cotan(\pi.s)=\pi.s.\frac{ \cos \pi.s}{ \sin \pi.s}=$$

$$=\displaystyle\pi.s.\frac{e^{i.\pi.s}+e^{-i.\pi.s}}{2}.\frac{2i}{e^{i.\pi.s}-e^{-i.\pi.s}}=$$

$$=\displaystyle\pi.s.i.\frac{e^{i.\pi.s}+e^{-i.\pi.s}}{e^{i.\pi.s}-e^{-i.\pi.s}}$$.

Multiplying the numerator and denominator by $$e^{i.\pi.s}$$ we get

$$\displaystyle \pi.s.cotan(\pi.s)=\pi.s.i.\frac{e^{2i.\pi.s}+1}{e^{2i.\pi.s}-1}=$$

$$=\displaystyle i.\pi.s + \frac{2.i.\pi.s}{e^{2i.\pi.s}-1}$$

We now need to find an infinite series for $$\frac{z}{e^z-1}$$

Let's assume we have an infinite series representation of that

$$\displaystyle\frac{z}{e^z-1}=\sum_{n=0}^{\infty}\frac{\beta_n}{n!}.z^n$$

Then, multiplying both sides by $$e^z-1$$, using the Taylor expansion for $$e^z$$ and dividing by z, we get

$$1=\displaystyle\sum_{n=0}^{\infty}\frac{\beta_n}{n!}.z^n.\sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)!}$$

Tune in next time for Part 3

Note by Bogdan Simeonov
3 years, 10 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$