# Geometry Proof

Let the side length a regular hexagon be $$a$$. Prove that the area of this regular hexagon is $$\dfrac{3\sqrt3 a^2}2$$.

Note by Rohit Camfar
1 year, 8 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Comment deleted 7 months ago

That's quite a question @Rohit Camfar , I have competed in the BMO but that's as far as I've gone, IMO is for the very best! What makes you ask? Besides, I have chosen to study Engineering not maths at University:) Are you an IMO aspirant by any chance? I have another question for you- is 14 your real age?

- 1 year, 5 months ago

So, you are not interested in IMO. I asked you because I have created a group on Slack where we prepare for RMO (the way to IMO in India). I am searching for IMO aspirants around the world on Brilliant. Its Okay if you are not an IMO aspirant.

- 1 year, 5 months ago

Unfortunately not but thanks for the offer!

- 1 year, 5 months ago

Its Ok! But if you find any then pleaseee tell me !

- 1 year, 5 months ago

Comment deleted Jan 15, 2017

Are you the same person?

- 1 year, 5 months ago

Sorry for the confusion Yes! That is the account which I use on my mobile.

- 1 year, 5 months ago

divide hexagon to 6 - equilateral triangles each with side length (a) by joining the center of hexagon to each vetices.

area of each equilateral triangle = sqrt3/4*a^2

area of hexagon = 6sqrt3a^2 /4 = 3sqrt3a^2 /2

- 1 year, 7 months ago