Waste less time on Facebook — follow Brilliant.
×

Geometry Proof

Let the side length a regular hexagon be \(a\). Prove that the area of this regular hexagon is \(\dfrac{3\sqrt3 a^2}2 \).

Note by Rohit Camfar
10 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

@Dan Ley I am notifying you here because only one person is related with this discussion. I have to ask you something really important. Are you an IMO aspirant? Rohit Camfar · 7 months ago

Log in to reply

@Rohit Camfar That's quite a question @Rohit Camfar , I have competed in the BMO but that's as far as I've gone, IMO is for the very best! What makes you ask? Besides, I have chosen to study Engineering not maths at University:) Are you an IMO aspirant by any chance? I have another question for you- is 14 your real age? Dan Ley · 7 months ago

Log in to reply

@Dan Ley So, you are not interested in IMO. I asked you because I have created a group on Slack where we prepare for RMO (the way to IMO in India). I am searching for IMO aspirants around the world on Brilliant. Its Okay if you are not an IMO aspirant. Rohit Camfar · 7 months ago

Log in to reply

@Rohit Camfar Unfortunately not but thanks for the offer! Dan Ley · 7 months ago

Log in to reply

@Dan Ley Its Ok! But if you find any then pleaseee tell me ! Rohit Camfar · 7 months ago

Log in to reply

Comment deleted 7 months ago

Log in to reply

@Ajay Aditya Are you the same person? Dan Ley · 7 months ago

Log in to reply

@Dan Ley Sorry for the confusion Yes! That is the account which I use on my mobile. Rohit Camfar · 7 months ago

Log in to reply

divide hexagon to 6 - equilateral triangles each with side length (a) by joining the center of hexagon to each vetices.

area of each equilateral triangle = sqrt3/4*a^2

area of hexagon = 6sqrt3a^2 /4 = 3sqrt3a^2 /2 Ahmad Saad · 9 months, 4 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...