I'm about to have the final-semester test and here is one of the practice questions:

\(a, b, c\) are positive real numbers such that \(a+b+c=1\).

Prove that \( { (a+\dfrac { 1 }{ a } ) }^{ 2 }+{ (b+\dfrac { 1 }{ b } ) }^{ 2 }+{ (c+\dfrac { 1 }{ c } ) }^{ 2 }>33\).

I know that the minimum of the above equation is \(\dfrac {300}{9}\) where \(a=b=c=\dfrac {1}{3}\) but I don't know how to prove it.

Please help me, test is going on very soon :)

**Note**: Done the test, there is a very nice question in the test too. I'll post it some time later :)

## Comments

Sort by:

TopNewestFrom \(A.M \ge H.M\) we get \(\left( \dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c } \right) \ge \dfrac{9}{a+b+c} \\ \therefore \left( \dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c } \right) \ge 9\)

\(\therefore (a+b+c)^2 + \left( \dfrac { 1 }{ a } +\dfrac { 1 }{ b } +\dfrac { 1 }{ c } \right)^2 \ge 82 \\ \implies a^2+b^2+c^2 + 2(ab+bc+ac) + \left( \dfrac { 1 }{ a^2 } +\dfrac { 1 }{ b^2 } +\dfrac { 1 }{ c^2 } \right) + 2\left( \dfrac { 1 }{ ab } +\dfrac { 1 }{ bc } +\dfrac { 1 }{ ca } \right) \ge 82\)

By Cauchy Schwarz inequality, \(a^2+b^2+c^2 \ge ab+bc+ca ~ \& \left( \dfrac { 1 }{ a^{ 2 } } +\dfrac { 1 }{ b^{ 2 } } +\dfrac { 1 }{ c^{ 2 } } \right) \ge \left( \dfrac { 1 }{ ab } +\dfrac { 1 }{ bc } +\dfrac { 1 }{ ca } \right)\)

\(\therefore 3\left(a^2+b^2+c^2+ \dfrac { 1 }{ a^{ 2 } } +\dfrac { 1 }{ b^{ 2 } } +\dfrac { 1 }{ c^{ 2 } } \right) \ge 82 \\ \implies \left(a^2+b^2+c^2+ \dfrac { 1 }{ a^{ 2 } } +\dfrac { 1 }{ b^{ 2 } } +\dfrac { 1 }{ c^{ 2 } } \right) \ge \dfrac{82}{3} \\ \implies \left(a^2+b^2+c^2+ \dfrac { 1 }{ a^{ 2 } } +\dfrac { 1 }{ b^{ 2 } } +\dfrac { 1 }{ c^{ 2 } } +6 \right) \ge \dfrac{82}{3} + 6 \\ \implies \left( a+\dfrac{1}{a} \right)^2+\left( b+\dfrac{1}{b} \right)^2+\left( c+\dfrac{1}{c} \right)^2 \ge \dfrac{82}{3} + 6 > 33\). – Purushottam Abhisheikh · 1 year, 9 months ago

Log in to reply

Chebyshev Sum Inequality. Without loss of generality, we can choose \(a,b,c\) in descending order, in which case the inequality tells us that

Nice proof. Rather than the Cauchy-Schwarz inequality I used the\(3(a^{2} + b^{2} + c^{2}) \ge (a + b + c)(a + b + c) = a^{2} + b^{2} + c^{2} + 2(ab + ac + bc)\)

\(\Longrightarrow 2(a^{2} + b^{2} + c^{2}) \ge 2(ab + ac + bc) \Longrightarrow a^{2} + b^{2} + c^{2} \ge ab + ac + bc.\)

Similarly for the inequality \(\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} \ge \dfrac{1}{ab} + \dfrac{1}{ac} + \dfrac{1}{bc}.\) – Brian Charlesworth · 1 year, 9 months ago

Log in to reply

– Purushottam Abhisheikh · 1 year, 9 months ago

Thats nice too.Log in to reply

\[f(a)+f(b)+f(c)\geq 3\times f\left(\frac{a+b+c}{3}\right)=3\times f\left(\frac{1}{3}\right)=3\times \left(\frac{1}{3}+3\right)^2=\frac{100}{3}\gt \frac{99}{3}=33\]

\[\therefore\quad f(a)+f(b)+f(c)\gt 33\] – Prasun Biswas · 1 year, 9 months ago

Log in to reply

\((a+\frac{1}{a})^2+(b+\frac{1}{b})^2+(c+\frac{1}{c})^2=(a^2+b^2+c^2)+(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})+6\)

Prove that \(3(x^2+y^2+z^2)\geq (x+y+z)^2\) with all \(x,y,z\)

\(\Rightarrow a^2+b^2+c^2\geq (a+b+c)^2/3=1/3\)

\((a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq 9\) with all \(a,b,c>0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9(a+b+c=1)\)

\(\Rightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2/3>=9^2/3=27\)

\(\Rightarrow (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})+(a^2+b^2+c^2)+6\geq 27+1/3+6>33\)

\(\Rightarrow (a+1/a)^2+(b+1/b)^2+(c+1/c)^2>33 \) – Duy Vu · 1 year, 9 months ago

Log in to reply

– Pranjal Jain · 1 year, 9 months ago

Hello, I have edited the \(\LaTeX\) in your comment. Can you please check it out for accuracy?Log in to reply

– Purushottam Abhisheikh · 1 year, 9 months ago

It should be \((x^2+y^2+z^2)\) in the second line from top.Log in to reply

– Pranjal Jain · 1 year, 9 months ago

Updated! Thanks. :)Log in to reply

Here is another method;

\(\because\) For positive real numbers \(A.M \ge G.M\) and equality holds if and only if all numbers are equal.

\(\therefore\) For minimum value of \( { (a+\dfrac { 1 }{ a } ) }^{ 2 }+{ (b+\dfrac { 1 }{ b } ) }^{ 2 }+{ (c+\dfrac { 1 }{ c } ) }^{ 2 } \\ {(a+\dfrac { 1 }{ a } ) }^{ 2 } ={ (b+\dfrac { 1 }{ b } ) }^{ 2 } = {(c+\dfrac { 1 }{ c } ) }^{ 2 } \)

So, \(a^2+\dfrac{1}{a^2}+2=b^2+\dfrac{1}{b^2}+2 \\ \implies a^2-b^2 +\dfrac{1}{a^2} - \dfrac{1}{a^2}=0 \\ \implies ~ (a-b)(a+b)(1-\dfrac{1}{a^2b^2})=0 \\ \therefore ~ a-b=0~\text{or}~ a+b=0 ~ \text{or} ~ ab=1 ~\text{or}~ ab=-1\)

Now \(a+b\) can never be 0 because both \(a\) & \(b\) are positive so \(ab\) would not be \(-1\) for the same reason. Only thing left is to eliminate our fourth root i.e. \(ab = 1\).

We know that \(a+b+c=1\). So \(a+b<1\).

Now \((a+b)^2 = a^2 + b^2 + 2ab ~ \\ \implies ~ (a+b)^2>2ab ~ \implies 1>2ab \\ \therefore ab< \dfrac{1}{2}\).

So only root left is \(a=b\). Similarly \(b=c\) & \(c=a\).

\(\therefore ~ a=b=c\)

Hence to minimise \( { (a+\dfrac { 1 }{ a } ) }^{ 2 }+{ (b+\dfrac { 1 }{ b } ) }^{ 2 }+{ (c+\dfrac { 1 }{ c } ) }^{ 2 } \) the condition is \(a=b=c=\dfrac{1}{3}\). – Purushottam Abhisheikh · 1 year, 9 months ago

Log in to reply

Log in to reply

Second, I think I know where you're wrong. If we plug those values into LHS, \(a+ \dfrac {1}{a} = \dfrac {10}{3}\), not \(\dfrac {4}{3}\). (Encountered this mistake too :p) – Trung Đặng Đoàn Đức · 1 year, 9 months ago

Log in to reply

– Brian Charlesworth · 1 year, 9 months ago

Yes, I realized I made a silly mistake so I deleted my comment. The inequality is correct; I checked using Lagrange multipliers, (i.e., calculus), but I'm still trying to figure out which inequality theorem might be useful here so as to find a non-calculus solution. Sorry, but I'll have to get back to this problem later when I have more time.Log in to reply