# This made me happy :)

Given the wave function

$\Psi(x) = \frac{N}{x^2 + a^2}$

we are to find the values of $n \in \left \{ 0 \right \} \bigcup \mathbb{N}$ such that $\left \langle x^n \right \rangle$ has a meaningful physical value. And by $\left \langle x^n \right \rangle$ we mean the following integral

$\int_{-\infty}^{+\infty} \Psi^{*} x^{n} \Psi \; \mathrm{d}x$

First, normalization will result in

$\int_{-\infty}^{+\infty} \Psi^{*} \Psi \; \mathrm{d}x = N^{2} \lim _{t\rightarrow \infty} \left (\frac{\frac{ax}{a^2 + x^2} + \arctan \left ( \frac{x}{a} \right )}{2a^3} \right )_{-t}^{t} = \frac{N^{2}\pi}{2a^{3}} = 1 \;\; \therefore \;\; N = \sqrt{\frac{2a^{3}}{\pi}}$

We can find $\left \langle x^n \right \rangle$ taking this integral to the complex plane, and observing that if we allow the function $\Psi$ to take complex values and we define

$f(z) = \frac{z^{n}}{(z^{2} + a^{2})^{2}}$

Then the residue of $f$ at $ia$ will be

$\mathrm{Res}(f, ia) = \lim_{z\rightarrow ia} \frac{\mathrm{d} }{\mathrm{d} z} f(z) = (ia)^{n-1} \; \frac{1-n}{4a^{2}}$

And according to a suitable theorem, we are able to write

$\int_{-\infty}^{+\infty} \Psi^{*} x^{n} \Psi \; \mathrm{d}x = 2 \pi i \times N \times \mathrm{Res}(f, ia) = \frac{\sqrt{2\pi}}{2} i^{n} (1-n) a^{n-\frac{3}{2}}$

And then we are allowed to say that only when $n$ takes the values $n = 2k$ with $k \in \left \{ 0 \right \} \bigcup \mathbb{N}$ the integral has a physical meaning. Note by Lucas Tell Marchi
4 years, 10 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$