Waste less time on Facebook — follow Brilliant.
×

This one is confusing! Please help

Q. There are 2 circles. 1 circle has its center as (0,5) and radius = 5 units. The other circle has its center as (12,0) and radius =12 units. A third circle is drawn which will pass through the center of the second circle and the two points of intersection of the other two circles. Find the radius of such a circle.

Note by Pramita Kastha
2 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

The equation of the first circle is \(x^2 + (y-5)^2 = 25\)

The equation of the second circle is \((x-12)^2 + y^2 = 144\)

Solving them together, we get the two points of intersection of both the circles as \((0,0)\) and \(\left( \dfrac{600}{169}, \dfrac{1440}{169} \right) \).

Centre of the second circle is \((0,5)\)

So the centre of the third circle ( say \((h,k)\) ) must be equidistant from the three points \((0,0)\ ; \left( \dfrac{600}{169}, \dfrac{1440}{169} \right) \ ; (0,5)\)

Using distance formula, find the value of \(h\) and \(k\). Radius of the circle would be the \(\sqrt{h^2 + k^2}\).

Do it yourself : Finding the values of \(h,k\)

Satyajit Mohanty - 2 years, 2 months ago

Log in to reply

@Calvin Lin @Chew-Seong Cheong @Satyajit Mohanty @Pi Han Goh @Nihar Mahajan and all others.pPlease help

Anik Mandal - 2 years, 2 months ago

Log in to reply

Is Answer 6 units

Hardik Gupta - 2 years, 2 months ago

Log in to reply

How? pls explain

Pramita Kastha - 2 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...