Three Kissing Circles

If three circles with radii \(x,y\), and \(z\) make tangents on each other as shown, what will be the area of the figure(magenta colored) formed between them in terms of \(x,y\), and \(z\)? I am posting my attempt below \(\frac { 1 }{ 2 } \left\{ \left( { x }^{ 2 }+xy+xz+yz \right) \ast \sin { \left( \cos ^{ -1 }{ \left( \frac { { x }^{ 2 }+xy+xz-yz }{ { x }^{ 2 }+xy+xz+yz } \right) } \right) } -\quad { x }^{ 2 }\cos ^{ -1 }{ \left( \frac { { x }^{ 2 }+xy+xz-yz }{ { x }^{ 2 }+xy+xz+yz } \right) -\quad { y }^{ 2 } } \cos ^{ -1 }{ \left( \frac { { y }^{ 2 }+xy+yz-xz }{ { y }^{ 2 }+xy+yz+xz } \right) -\quad { z }^{ 2 } } \cos ^{ -1 }{ \left( \frac { { z }^{ 2 }+xz+yz-xy }{ { z }^{ 2 }+xz+yz+xy } \right) } \right\} \)

Note by Bilal Akmal
2 years, 12 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

"Update on the formula to calculate the magenta area": This one works too :)(angles are again assumed in radian) \(\sqrt { { x }^{ 2 }yz+x{ y }^{ 2 }z+xy{ z }^{ 2 } } -\frac { { x }^{ 2 } }{ 2 } \left[ \sin ^{ -1 }{ \left( \frac { y+z }{ 2x+2y } \right) } +\sin ^{ -1 }{ \left( \frac { y+z }{ 2x+2z } \right) } \right] -\frac { { y }^{ 2 } }{ 2 } \left[ \sin ^{ -1 }{ \left( \frac { x+z }{ 2x+2y } \right) +\sin ^{ -1 }{ \left( \frac { x+z }{ 2y+2z } \right) } } \right] -\frac { { z }^{ 2 } }{ 2 } \left[ \sin ^{ -1 }{ \left( \frac { x+y }{ 2x+2z } \right) +\sin ^{ -1 }{ \left( \frac { x+y }{ 2y+2z } \right) } } \right] \)

Bilal Akmal - 2 years, 11 months ago

Log in to reply

Yeah, it works out fine. I get the same result, although not exactly with the same expression.

Michael Mendrin - 2 years, 11 months ago

Log in to reply

Area of triangle - sum of the areas of three sectors

Vincent Miller Moral - 2 years, 11 months ago

Log in to reply

Can you please elaborate on how you produced the formula.

Curtis Clement - 2 years, 11 months ago

Log in to reply

Form a triangle with the circles' origins as vertices.This should be equal to the magenta area plus some sectors of each circle. Minus the sectors and you get the above equation(angles assumed in radian.)

Bilal Akmal - 2 years, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...