Waste less time on Facebook — follow Brilliant.
×

To really find a solution, Positively

During my research in Engineering, I came across this problem.

There is a complex valued function, with the domain as the imaginary axis.

\[P(j\omega) = P_R(\omega^2)+j\omega P_I(\omega^2)\]

I need to find the value of \(P(j\omega)\), at the sequence of points where it is real and draw appropriate conclusions.

There are two scenarios here. (1) Both \(P_R(x)\) and \(P_I(x)\) are polynomials in \(x\). (2) Not case 1.

For case 1 : As we are interested in values of \(P_R(\omega^2\)) at those \(\omega\), where \(P_I(\omega^2)=0\), it is obvious that we are interested ONLY in positive and real solutions to \(P_I(x)=0\).

My question to the community is this.

  • Are there any methods to find the real roots (or better positive real roots) of a polynomial, without actually finding all the roots?*

If there is no simpler solution, than finding all the roots; then the procedure which I envision would become more computationally complex than a conventional technique that is more than 80 years old.

If case 1 is worth pursuing, then case 2 could be an interesting extension.

Note by Janardhanan Sivaramakrishnan
1 year, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...