# Triangle Dissection

What is the smallest number of acute triangles into which any obtuse triangle can be dissected? Or prove the impossibility of it.

Clarification: A right angle is neither acute nor obtuse.

###### Source: Martin Gardner.

Note by Pi Han Goh
2 years, 10 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Spoiler alert ..... Don't scroll down until you've given up looking for your own proof ...

                   

The answer is $$7.$$ Wallace Manheimer came up with the proof back in 1960. Briefly, if we were to draw a line from the vertex at the obtuse angle to the opposite side then either we'd end end up with two right triangles, or one of the partitioned triangles would be obtuse. So then we would have either one or two triangles to dissect into acute triangles, which would result in a non-minimal dissection of the original triangle. So in order to find a minimal solution, the line from vertex at the obtuse angle cannot go all the way to the opposite side.

Now from the endpoint of this abbreviated line must emanate a minimum of $$5$$ lines, (inclusive of the first line from the obtuse vertex), since otherwise not all of the angles at this vertex would be acute. The points where these additional $$4$$ lines intersect the sides of the original triangle can then be joined, resulting in an inner pentagon composed of $$5$$ triangles plus $$2$$ "outer" triangles for a total of $$7$$ acute triangles formed.

Here is a diagram of the minimal dissection "template".

- 2 years, 10 months ago

NICE! The inspiration must have gave it away ahah!

Follow-up question:

Prove that an obtuse triangle ca be dissected into a minimum of 8 acute isosceles triangles.

- 2 years, 10 months ago

@Pi Han Goh How do I create a vertical "spoiler gap" in LaTeX?

- 2 years, 10 months ago

Edited it in for you. Essentially you have to tell it to "leave several empty rows", and also force the rows to not be collapsed.

Staff - 2 years, 10 months ago

Great! Thanks for doing that. :)

- 2 years, 10 months ago