We know that \(\cos { 2x } =\cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } \)

This is just a proof I have made. I don't know if it already exists but I just wanted to share it with you.

\({ \left( { e }^{ ix } \right) }^{ 2 }={ e }^{ 2ix }\\ \\ { \left( { e }^{ ix } \right) }^{ 2 }={ e }^{ i\times 2x }\\ \\ { \left( \cos { x } +i\sin { x } \right) }^{ 2 }=cos2x+isin2x\\ \\ \cos ^{ 2 }{ x } +{ i }^{ 2 }\sin ^{ 2 }{ x } +2i\cos { x } \sin { x } =cos2x+isin2x\\ \\ \cos ^{ 2 }{ x } +\left( -1 \right) \sin ^{ 2 }{ x } +i\times 2\cos { x } \sin { x } =cos2x+isin2x\\ \\ \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } +i\sin { 2x } =cos2x+isin2x\\ \\ So,\quad \cos { 2x } =\cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } \)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestNice observational skill Archit :)

Log in to reply

Thanks!

Log in to reply

This also exists !!

Log in to reply

But I thought it myself.

Log in to reply

Ok ! Did you try all of my problems - new ones ?

Log in to reply