The sum of tangents trigonometric identity gives us that

\[ \tan ( \alpha + \beta) = \frac{ \tan \alpha + \tan \beta} { 1 - \tan \alpha \tan \beta} .\]

By letting \( \alpha = \tan^{-1} x \) and \( \beta = \tan^{-1} y \), the equivalent trigonometric identity on \( \tan^{-1} \) is

\[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y} { 1-xy} \right). \]

Let's use this identity to calculate \( \tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 \). We first have

\[ \tan^{-1} 1 + \tan^{-1} 2 = \tan^{-1} \left( \frac { 1 + 2 } { 1 - 1 \times 2} \right)= \tan^{-1} (-3). \]

As such, this gives

\[ \begin{align} & \tan^{-1} 1+ \tan^{-1} 2 + \tan^{-1} 3 \\ = & \tan^{-1} (-3) + \tan^{-1} 3\\ = & \tan^{-1} \left( \frac{-3 + 3} { 1 - (-3)\times 3 } \right) \\ = & \tan^{-1} 0 \\ = & 0 \\ \end{align} \]

By considering the right triangles, we get that \( \tan^{-1} 1 > 0 \), \( \tan^{-1} 2 > 0 \) and \( \tan^{-1} 3 > 0 \). Hence, the sum of 3 positive terms is 0.

What went wrong?

## Comments

Sort by:

TopNewestI think you missed the condition there ...... Mod(xy) should be less than one to use the formula .... Or els the RHS becomes negative where as LHS remains positive!! – Abhinav Raichur · 2 years, 8 months ago

Log in to reply