Waste less time on Facebook — follow Brilliant.
×

Trigonometry

Prove the following statements. tanA/1-cotA+cotA/1-tanA=(secA.cosecA+1)

Note by Alok Patel
3 years, 3 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

Here's how I did it:

\(\frac{tanA}{1-cotA}\) + \(\frac{cotA}{1-tanA}\)

= \(\frac{\frac{sinA}{cosA}}{1-\frac{cosA}{sinA}}\) + \(\frac{\frac{cosA}{sinA}}{1-\frac{sinA}{cosA}}\)

= \(\frac{sin^{2}A}{cosA(sinA-cosA)}\) + \(\frac{cos^{2}A}{sinA(cosA-sinA)}\)

= \(\frac{sin^{3}A-cos^{3}A}{sinAcosA(sinA-cosA)}\)

= \(\frac{(sinA-cosA)(sin^{2}A+sinAcosA+cos^{2}A)}{sinAcosA(sinA-cosA)}\)

= \(\frac{sin^{2}A+sinAcosA+cos^{2}A}{sinAcosA}\)

= \(\frac{1+sinAcosA}{sinAcosA}\)

= \(1+\frac{1}{sinAcosA}\)

= 1 + secAcosecA

Hope you understood. Ajay Maity · 3 years, 3 months ago

Log in to reply

@Ajay Maity Thank you to help me in problem solving Alok Patel · 3 years, 3 months ago

Log in to reply

@Alok Patel You are welcome! Ajay Maity · 3 years, 3 months ago

Log in to reply

In the right hand side of the equation, do you mean \(\text{sec A csc A + 1}\) or \(\text{sec A (csc A +1)}\)? 敬全 钟 · 3 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...