# Try to solve these sequences

Hey everyone,

I brought you some clever and funny sequences try to find the next term to everyone

$$\text{Sequence 1}$$ : $$1,11,21,1211,111221,?$$

$$\text{Sequence 2}$$ : $$10,11,12,13,20,?,1000$$

$$\text{Sequence 3}$$ : $$6,2,5,5,4,5,6,3,?$$

$$\text{Sequence 4}$$ : $$2,71,828,?$$

Have fun

Note by Kaito Einstein
2 years, 6 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

For sequence 1, the sequence is $$312211, 13112221, 1113213211, \dots$$. It is called "look-and-say" sequence, which has the property to describe the amount of same digits concatenating together, then concatenate that word with the digit itself.

For example, start with 1 (one 1s), 11 (two 1s), 21 (one 2s and one 1s), 1211 (one 1s, one 2s and two 1s), 111221 (three 1s, two 2s and one 1), 312211 (one 3s, one 1s, two 2s, two 1s) and so on. Notice that the next number is formed by concatenating the amount of that consecutive digit into the number itself

For sequence 2, see sequence A082492 at OEIS

For sequence 3, see sequence A006942 at OEIS

For sequence 4, it is $$1828, 45904, 523536, \dots$$. It follows the significant figures of $$e$$.

- 2 years, 6 months ago

yes the first one is pretty famous. good job ^^

- 2 years, 6 months ago

Oh I know the third one

Thought of it sometime back

So, it basically represents the number of "line segments" that are used to display numbers on a calculator (As far as Ii know, all calculators have nearly the same display)

So, the next number is 7, which is the number of segments required to make the number 8.

- 2 years, 6 months ago

Edit: I did not see @Kay Xspre 's solution which had the link to the series.

- 2 years, 6 months ago