If \(f\) is a continuous function with \( \displaystyle \int_0^x f(t) \, dt \to \infty\) as \( |x| \to \infty \), then show that every line \( y = mx\) intersects the curve \(\displaystyle y^2 + \int_0^x f(t) \, dt = 2 \).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestProbably wrong. But here's my attempt.

Let \( F(x) = \displaystyle \int_0^x f(t) dt \)

Then, when \( x = 0 \), \( F(x) = 0 \), and when \( |x| \rightarrow \infty \), \( F(x) \rightarrow \infty \).

Now, let \( G(x) = m^2x^2 + F(X) \). Now, when, when \( x = 0 \), \( G(x) = 0 \), and when \( |x| \rightarrow \infty, \), \( G(x) \rightarrow \infty \).

By the IVT, \( G(x_o) = 2 \) for some \( x_o \)

Log in to reply