A popular math problem is proving that \(22/7\) exceeds \(\pi\), without resorting to known values of \(\pi\) or approximations by calculator. One method uses certain definite integrals which work out to \(22/7\) \( -\pi \) which is known to be greater than \(0\). But back around 250 BC, Archimedes was the first to prove that \(22/7\) exceeds \(\pi\), by successive use of the trigonometric identity

\[Tan(2x)=\dfrac { 2Tan(x) }{ 1-{ (Tan(x)) }^{ 2 } } \]

Starting with the regular hexagon, and doubling the number of sides until he reached a regular polygon of \(96\) sides, he was able to show that \(22/7\) does indeed exceed \(\pi\). Unfortunately, he relied on a series of inequalities in his computations, the notes of which are lost, so we have no complete proof left to us from his works. So, here’s an updated version of his approach that will be an exact proof, beginning with the following diagram

where

\(\angle OPB=90°\)

\(OP=OA=1\)

\(OB=Sec(\dfrac { 45° }{ n } )\)

\(OC=(\dfrac { a }{ b } )(\dfrac { 1 }{ 4n } )Csc(\dfrac{45°}{n})\)

In this diagram shown, \(n=2\) and \(\dfrac { a }{ b } =\dfrac { 25 }{ 7 } \), a very crude apprximation of \(\pi\). \(\dfrac { a }{ b } \) is selected so that \(OC>OB\), so that it is clear that the areas are

\(\left[ OPC \right] >\left[ OPB \right] >\left[ OPC \right] \)

That is

\((\dfrac { 1 }{ 8n } )(\dfrac { a }{ b } )>(\dfrac { 1 }{ 2 } )Tan(\dfrac { 45° }{ n } )>(\dfrac { 1 }{ 8n } )\pi \)

so that if we can prove that for some sufficiently large \(n\)

\((\dfrac { 1 }{ 4n } )(\dfrac { a }{ b } )>Tan(\dfrac { 45° }{ n } )\)

then we've proven that

\(\dfrac { a }{ b } >\pi \)

Now but there is a delightfully useful trigonometric identity to use for this purpose, which Archimedes didn't have

\(Tan(nx)=F(n,Tan(x))=i\dfrac { { (1-iTan(x)) }^{ n }-{ (1+iTan(x)) }^{ n } }{ { (1-iTan(x)) }^{ n }+{ (1+iTan(x)) }^{ n } } \)

If \((\dfrac { 1 }{ 4n } )(\dfrac { a }{ b } )>Tan(\dfrac { 45° }{ n } )\), then

\(F(n,(\dfrac { 1 }{ 4n } )(\dfrac { a }{ b } ))>F(n,Tan(\dfrac { 45° }{ n } )) \), (a little handwaving here), but since

\(F(n,Tan(\dfrac { 45° }{ n } ))=1\), we have

\(F(n,(\dfrac { 1 }{ 4n } )(\dfrac { a }{ b } ))>1\)

So, for \(\dfrac { a }{ b } =\dfrac { 22 }{ 7 } \), all we have to do is to show that for some sufficiently large \(n\), let's say \(n=24\), which corresponds to the regular \(96\) sided polygon Archimedes used

\(F(n,(\dfrac { 1 }{ 4n } )(\dfrac { a }{ b } ))=F(24,(\dfrac { 1 }{ 96 } )(\dfrac { 22 }{ 7 } ))>1\)

Using that trigonometric identity above, the exact final rational fraction is

\(\dfrac { 3070617780371250623172531488874792422422762969087263790473600 }{3070399174588386853835740065608415583799863505007168821897761 } \)

Note that the first \(6\) digits of the numerator and denominator are

\(307061>307039\)

which conclusively and exactly proves that \(22/7\)\(>\pi\), without resorting to approximations, without using known computed values of \(\pi\), nor infinite series, nor infinite products, nor infinite continued fractions.

Going further, we can let \(n=1557\), corresponding to a regular polygon of \(6228\) sides, and let \(a/b=355/113\), another famous and very accurate approximation. We end up with a rational fraction with a numerator and a denominator both \(9105\) digits long, the first \(12\) digits of each being

\(196554866601 > 196554866571\)

thus proving that \(355/113>\pi\) as well.

Addendum: Note that as \(n\rightarrow \infty \)

\(Tan(x)=Tan(n(\dfrac { x }{ n } ))=F(n,Tan(\dfrac { x }{ n } ))\approx F(n,(\dfrac { x }{ n } ))\)

\(F(n,(\dfrac { x }{ n } ))=i\dfrac { { (1-\dfrac { ix }{ n } ) }^{ n }-{ (1+\dfrac { ix }{ n } ) }^{ n } }{ { (1-\dfrac { ix }{ n } ) }^{ n }+{ (1+\dfrac { ix }{ n } ) }^{ n } } =i\dfrac { { e }^{ -ix }-{ e }^{ ix } }{ { e }^{ -ix }+{ e }^{ ix } } =Tan(x)\)

which shows the relationship between the exponential form of the \(Tan(x)\) function and the trigonometric identity given above for \(Tan(nx)\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestMy favorite proof is this funny integral. \[0 < \int_0^1 \frac{x^4(1-x)^4}{1+x^2} \,\mathrm dx = \frac{22}7 - \pi\]

Log in to reply

Well, it's true that it's hard to beat that one as "something that can be done on the back of an envelope". A large envelope anyway.

Log in to reply

Wow.

Log in to reply

I know right!? :D

Log in to reply

@Michael Mendrin , Your note inspired my next sum!

Integrate It! Part-V

https://brilliant.org/community-problem/integrate-it-part-v/?group=DvYD57CYrdYl&just_created=true

Log in to reply

That's really something, u know!! Thankx for posting it.. Quite enlightening. :-)

Log in to reply

Eh, but you know, at the point where I said, "a little handwaving here", there's actually more that needs to be said before this really becomes a complete proof. But this tiny detail will take up too much space to resolve.

Log in to reply

Another proof that \(\large\frac{22}{7}>\pi\).

Log in to reply

Dude, you just published the solution of my problem! Why?!

Log in to reply

Probably because she didn't know you posted this as a problem?

Log in to reply

Log in to reply

Log in to reply

Log in to reply

Log in to reply

Log in to reply

Log in to reply

`[your problem](link direction)`

Log in to reply

Log in to reply