Waste less time on Facebook — follow Brilliant.
×

Using an isosceles triangle and basic trigonometric identities to prove the trigonometric double angle formulas

First of all, we construct an Isosceles Triangle like this:

With \(AB=BC=a\) (say). And \(B=2x\). Then \(AD \perp BC\) is constructed.

Subsequently, since the angles \(BAC\) and \(ACB\) are equal, angle \(ACB = 90 - x\), then angle \(CAD=x\).

From triangle \(ADC\):

\(\tan \ x\ =\ \frac{CD}{AD}\)

\(\implies \tan \ x\ =\ \frac{a-a\cos 2x}{a\sin 2x}\)

\(\implies \tan \ x\ =\ \frac{1-\cos 2x}{\sin 2x}\)

\(\implies \cos 2x=1-\sin 2x\tan x\)

Squaring both sides,

\(\implies \cos ^22x=1-2\sin 2x\tan x+\sin ^22x\tan ^2x\)

\(\implies 1-\sin ^22x=1-2\sin 2x\tan x+\sin ^22x\tan ^2x\)

\(\implies \sin ^22x=2\sin 2x\tan x-\sin ^22x\tan ^2x\)

\(\sin 2x\) is not necessarily \(0\), so we can divide both sides by \(\sin 2x\).

\(\implies \sin 2x=2\tan x-\sin 2x\tan ^2x\)

\(\implies \sin 2x\left(1+\tan ^2x\right)=2\tan x\)

\(\implies \boxed{\sin 2x=\frac{2\tan x}{1+\tan ^2x}}\)

Furthermore,

\(\sin 2x=\frac{2\tan x}{1+\tan ^2x}=\frac{2\tan x}{\sec ^2x}=2\tan x\cos ^2x=2\frac{\sin x}{\cos x}\cos ^2x=\boxed{2\sin x\cos x}\)

Now, from \(\tan \ x\ =\ \frac{1-\cos 2x}{\sin 2x}\):

\(\sin 2x=\ \frac{1-\cos 2x}{\tan x}\)

\(\implies \frac{2\tan x}{1+\tan ^2x}=\ \frac{\left(1-\cos 2x\right)}{\tan x}\)

\(\implies \frac{2\tan ^2x}{1+\tan ^2x}=\ 1-\cos 2x\)

\(\implies \cos 2x=1-\frac{2\tan ^2x}{1+\tan ^2x}\)

\(\implies \boxed{\cos 2x=\frac{1-\tan ^2x}{1+\tan ^2x}}\)

From here,

\(\cos 2x=\frac{1-\tan ^2x}{1+\tan ^2x} = \frac{\cos ^2x\left(1-\tan ^2x\right)}{\cos ^2x\left(1+\tan ^2x\right)} = \frac{\cos ^2x-\sin ^2x}{\cos ^2x+\sin ^2x} = \frac{\cos ^2x-\sin ^2x}{1} = \boxed{\cos ^2x-\sin ^2x}\)

Combining the expansions,

\(\tan 2x=\frac{\sin 2x}{\cos 2x}=\frac{\left(\frac{2\tan x}{1+\tan ^2x}\right)}{\left(\frac{1-\tan ^2x}{1+\tan ^2x}\right)} = \boxed{\frac{2\tan x}{1-\tan ^2x}}\)

Note by Arkajyoti Banerjee
7 months, 1 week ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

All is to confusing

Annie Li - 7 months ago

Log in to reply

Yeah, it is but an indirect way of deriving the identities using just basic trigonometry.

Arkajyoti Banerjee - 7 months ago

Log in to reply

i can not understand anything. explanation anyone??????

Annie Li - 7 months ago

Log in to reply

What did you not understand, the construction of and in the triangle?

Arkajyoti Banerjee - 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...