Waste less time on Facebook — follow Brilliant.
×

Value of Trigonometry of Special Angles

Let us start from the value of sin.

\(\sin{0} = \frac{1}{2}\sqrt{0}\)

\(\sin{30} = \frac{1}{2}\sqrt{1}\)

\(\sin{45} = \frac{1}{2}\sqrt{2}\)

\(\sin{60} = \frac{1}{2}\sqrt{3}\)

\(\sin{90} = \frac{1}{2}\sqrt{4}\)

\(\sin{120} = \frac{1}{2}\sqrt{3}\)

\(\sin{135} = \frac{1}{2}\sqrt{2}\)

\(\sin{150} = \frac{1}{2}\sqrt{1}\)

\(\sin{180} = \frac{1}{2}\sqrt{0}\)

\(\sin{210} = -\frac{1}{2}\sqrt{1}\)

\(\sin{225} = -\frac{1}{2}\sqrt{2}\)

\(\sin{240} =- \frac{1}{2}\sqrt{3}\)

\(\sin{270} = -\frac{1}{2}\sqrt{4}\)

\(\sin{300} = -\frac{1}{2}\sqrt{3}\)

\(\sin{315} = -\frac{1}{2}\sqrt{2}\)

\(\sin{330} = -\frac{1}{2}\sqrt{1}\)

\(\sin{360} = -\frac{1}{2}\sqrt{0}\)

Let us continue with cos.

\(\cos{0} = \frac{1}{2}\sqrt{4}\)

\(\cos{30} = \frac{1}{2}\sqrt{3}\)

\(\cos{45} = \frac{1}{2}\sqrt{2}\)

\(\cos{60} = \frac{1}{2}\sqrt{1}\)

\(\cos{90} = \frac{1}{2}\sqrt{0}\)

\(\cos{120} = -\frac{1}{2}\sqrt{1}\)

\(\cos{135} = -\frac{1}{2}\sqrt{2}\)

\(\cos{150} = -\frac{1}{2}\sqrt{3}\)

\(\cos{180} = -\frac{1}{2}\sqrt{4}\)

\(\cos{210} = -\frac{1}{2}\sqrt{3}\)

\(\cos{225} = -\frac{1}{2}\sqrt{2}\)

\(\cos{240} = -\frac{1}{2}\sqrt{1}\)

\(\cos{270} = \frac{1}{2}\sqrt{0}\)

\(\cos{300} = \frac{1}{2}\sqrt{1}\)

\(\cos{315} = \frac{1}{2}\sqrt{2}\)

\(\cos{330} = \frac{1}{2}\sqrt{3}\)

\(\cos{360} = \frac{1}{2}\sqrt{4}\)

For the value of tan, cot, sec, and csc, just remember that

\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)

\(\cot \theta = \frac{1}{\tan \theta}\)

\(\sec \theta = \frac{1}{\cos \theta}\)

\(\csc \theta = \frac{1}{\sin \theta}\)

These are some additional values

\(\sin{15} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\sin{75} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{105} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{165} = \frac{\sqrt{6-}\sqrt{2}}{4}\)

\(\sin{195} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{255} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{285} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{345} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{15} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{75} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\cos{105} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{165} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{195} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{255} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{285} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\cos{345} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

Math master must remember this value, but I'd made it simple for you. If you have additional information about this note, just write it in comment, amd I'll add it on my note.

Note by Jonathan Christianto
2 years, 8 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

Very nice! I'd never seen them laid out that way before. Bill Bell · 2 years, 8 months ago

Log in to reply

@Bill Bell Yes, sir. I got it from my teacher Jonathan Christianto · 2 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...