Let us start from the value of sin.

\(\sin{0} = \frac{1}{2}\sqrt{0}\)

\(\sin{30} = \frac{1}{2}\sqrt{1}\)

\(\sin{45} = \frac{1}{2}\sqrt{2}\)

\(\sin{60} = \frac{1}{2}\sqrt{3}\)

\(\sin{90} = \frac{1}{2}\sqrt{4}\)

\(\sin{120} = \frac{1}{2}\sqrt{3}\)

\(\sin{135} = \frac{1}{2}\sqrt{2}\)

\(\sin{150} = \frac{1}{2}\sqrt{1}\)

\(\sin{180} = \frac{1}{2}\sqrt{0}\)

\(\sin{210} = -\frac{1}{2}\sqrt{1}\)

\(\sin{225} = -\frac{1}{2}\sqrt{2}\)

\(\sin{240} =- \frac{1}{2}\sqrt{3}\)

\(\sin{270} = -\frac{1}{2}\sqrt{4}\)

\(\sin{300} = -\frac{1}{2}\sqrt{3}\)

\(\sin{315} = -\frac{1}{2}\sqrt{2}\)

\(\sin{330} = -\frac{1}{2}\sqrt{1}\)

\(\sin{360} = -\frac{1}{2}\sqrt{0}\)

Let us continue with cos.

\(\cos{0} = \frac{1}{2}\sqrt{4}\)

\(\cos{30} = \frac{1}{2}\sqrt{3}\)

\(\cos{45} = \frac{1}{2}\sqrt{2}\)

\(\cos{60} = \frac{1}{2}\sqrt{1}\)

\(\cos{90} = \frac{1}{2}\sqrt{0}\)

\(\cos{120} = -\frac{1}{2}\sqrt{1}\)

\(\cos{135} = -\frac{1}{2}\sqrt{2}\)

\(\cos{150} = -\frac{1}{2}\sqrt{3}\)

\(\cos{180} = -\frac{1}{2}\sqrt{4}\)

\(\cos{210} = -\frac{1}{2}\sqrt{3}\)

\(\cos{225} = -\frac{1}{2}\sqrt{2}\)

\(\cos{240} = -\frac{1}{2}\sqrt{1}\)

\(\cos{270} = \frac{1}{2}\sqrt{0}\)

\(\cos{300} = \frac{1}{2}\sqrt{1}\)

\(\cos{315} = \frac{1}{2}\sqrt{2}\)

\(\cos{330} = \frac{1}{2}\sqrt{3}\)

\(\cos{360} = \frac{1}{2}\sqrt{4}\)

For the value of tan, cot, sec, and csc, just remember that

\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)

\(\cot \theta = \frac{1}{\tan \theta}\)

\(\sec \theta = \frac{1}{\cos \theta}\)

\(\csc \theta = \frac{1}{\sin \theta}\)

These are some additional values

\(\sin{15} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\sin{75} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{105} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{165} = \frac{\sqrt{6-}\sqrt{2}}{4}\)

\(\sin{195} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{255} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{285} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{345} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{15} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{75} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\cos{105} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{165} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{195} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{255} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{285} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\cos{345} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

Math master must remember this value, but I'd made it simple for you. If you have additional information about this note, just write it in comment, amd I'll add it on my note.

## Comments

Sort by:

TopNewestVery nice! I'd never seen them laid out that way before. – Bill Bell · 2 years, 8 months ago

Log in to reply

– Jonathan Christianto · 2 years, 8 months ago

Yes, sir. I got it from my teacherLog in to reply