Waste less time on Facebook — follow Brilliant.
×

Value of Trigonometry of Special Angles

Let us start from the value of sin.

\(\sin{0} = \frac{1}{2}\sqrt{0}\)

\(\sin{30} = \frac{1}{2}\sqrt{1}\)

\(\sin{45} = \frac{1}{2}\sqrt{2}\)

\(\sin{60} = \frac{1}{2}\sqrt{3}\)

\(\sin{90} = \frac{1}{2}\sqrt{4}\)

\(\sin{120} = \frac{1}{2}\sqrt{3}\)

\(\sin{135} = \frac{1}{2}\sqrt{2}\)

\(\sin{150} = \frac{1}{2}\sqrt{1}\)

\(\sin{180} = \frac{1}{2}\sqrt{0}\)

\(\sin{210} = -\frac{1}{2}\sqrt{1}\)

\(\sin{225} = -\frac{1}{2}\sqrt{2}\)

\(\sin{240} =- \frac{1}{2}\sqrt{3}\)

\(\sin{270} = -\frac{1}{2}\sqrt{4}\)

\(\sin{300} = -\frac{1}{2}\sqrt{3}\)

\(\sin{315} = -\frac{1}{2}\sqrt{2}\)

\(\sin{330} = -\frac{1}{2}\sqrt{1}\)

\(\sin{360} = -\frac{1}{2}\sqrt{0}\)

Let us continue with cos.

\(\cos{0} = \frac{1}{2}\sqrt{4}\)

\(\cos{30} = \frac{1}{2}\sqrt{3}\)

\(\cos{45} = \frac{1}{2}\sqrt{2}\)

\(\cos{60} = \frac{1}{2}\sqrt{1}\)

\(\cos{90} = \frac{1}{2}\sqrt{0}\)

\(\cos{120} = -\frac{1}{2}\sqrt{1}\)

\(\cos{135} = -\frac{1}{2}\sqrt{2}\)

\(\cos{150} = -\frac{1}{2}\sqrt{3}\)

\(\cos{180} = -\frac{1}{2}\sqrt{4}\)

\(\cos{210} = -\frac{1}{2}\sqrt{3}\)

\(\cos{225} = -\frac{1}{2}\sqrt{2}\)

\(\cos{240} = -\frac{1}{2}\sqrt{1}\)

\(\cos{270} = \frac{1}{2}\sqrt{0}\)

\(\cos{300} = \frac{1}{2}\sqrt{1}\)

\(\cos{315} = \frac{1}{2}\sqrt{2}\)

\(\cos{330} = \frac{1}{2}\sqrt{3}\)

\(\cos{360} = \frac{1}{2}\sqrt{4}\)

For the value of tan, cot, sec, and csc, just remember that

\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)

\(\cot \theta = \frac{1}{\tan \theta}\)

\(\sec \theta = \frac{1}{\cos \theta}\)

\(\csc \theta = \frac{1}{\sin \theta}\)

These are some additional values

\(\sin{15} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\sin{75} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{105} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{165} = \frac{\sqrt{6-}\sqrt{2}}{4}\)

\(\sin{195} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{255} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{285} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\sin{345} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{15} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{75} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\cos{105} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{165} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{195} = -\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{255} = \frac{-\sqrt{6}+\sqrt{2}}{4}\)

\(\cos{285} = \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\cos{345} = \frac{\sqrt{6}+\sqrt{2}}{4}\)

Math master must remember this value, but I'd made it simple for you. If you have additional information about this note, just write it in comment, amd I'll add it on my note.

Note by Jonathan Christianto
2 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Very nice! I'd never seen them laid out that way before.

Bill Bell - 2 years, 11 months ago

Log in to reply

Yes, sir. I got it from my teacher

Jonathan Christianto - 2 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...