Let \(a_1,a_2,a_3,b_1,b_2,b_3\) be six real numbers also consider two vectors \(\vec{A}\) and \(\vec{B}\) such that:-

\[\vec{A}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}\] \[\vec{B}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k}\]

Now let \(\theta\) be the angle between these vectors we know that:- \[\vec{A}.\vec{B}=|\vec{A}||\vec{B}|Cos\theta\] Rearranging this equation gives:- \[Cos\theta = \frac{\vec{A}.\vec{B}}{|\vec{A}||\vec{B}|}\] Putting the values of \(\vec{A}\) and \(\vec{B}\) and applying rules of vector algebra ,equation become:-

\[Cos\theta=\frac{(a_1b_1+a_2b_2+a_3b_3)}{(\sqrt{a_1^2+a_2^2+a_3^2})(\sqrt{b_1^2+b_^2+b_3^2})}\]

Squaring both sides:- \[Cos^2\theta=\frac{(a_1b_1+a_2b_2+a_3b_3)^2}{(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)}\] Now we know that \(Cos^2\theta \leq 1\)........putting the value of \(Cos^2\theta\) in above inequality and rearranging gives cauchy schawarz inequality:- \[(a_1b_1+a_2b_2+a_3b_3)^2 \leq (a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

There are no comments in this discussion.