**we know that,**
\(\boxed{v=u+at}\)

*here,*
v=v'

u=u

a=-g

t=\(\frac{t_{a}}{n}\)

when, t=\(t_{a}\)

v=o

a=-g

=>u-g\(t_{a}\)=0

=>u=g\(t_{a}\)** __**(1)

when, t=\(\frac{t_{a}}{n}\)

v'=u-g\(\frac{t{a}}{n}\)

v'=\(\frac{nu-gt_{a}}{n}\)

v'=\(\frac{nu-u}{n}\) *[since, from (1)]*

\(\boxed{v'=u\frac{n-1}{n}}\)

**therefore, the velocity becomes \(\frac{n-1}{n}\) times its projected velocity**

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestYou may \(\large \displaystyle \color{red}{\heartsuit}\) this! \(\ddot \smile\)

Log in to reply

tq it'll be helpful, i hope.... :)

Log in to reply