Waste less time on Facebook — follow Brilliant.
×

Virtual Work Method

Hello Physicists!

I am studying Newton's Laws of Motion, and am working out some problems on Pulleys and Constrained motion. I have heard of a technique called the Virtual Work Method, also called the T dot Trick or the Tension Trick. I would like to learn about it, to make my problem solving effective. So please write about it in this note and attach an example problem. I'll be highly grateful.

Thanks.

Swapnil

Note by Swapnil Das
1 year, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

The crux of the Virtual Work Method is that the sum of work done by all internal forces of a system is zero!. So to explain this in the context of pulley block system I'll consider bodies \(B_1,B_2,B_3\dots B_N\) which, due to the strings they are attached to, are experiencing a tension of \(\vec{T_1},\vec{T_2}\dots \vec{T_N}\). Also, consider that in a certain time \(t\) these blocks get displaced by \(\vec{S_1},\vec{S_2}\dots \vec{S_N}\). Since the total work done by all internal forces is zero, we can write:

\(\boxed{\displaystyle \sum_{i=0}^{N} \vec{T_{i}}.\vec{S_{i}} = 0}\)...\((1)\)

Differentiating the above equation twice we get:

\(\boxed{\displaystyle \sum_{i=0}^{N} \vec{T_{i}}.\vec{a_{i}} = 0}\) (Here \(\vec{a_i}\) denotes the accelleration of the body \(B_i\))

This method is basically used to find the relationship between the accelerations of the various moving bodies of the system.

Hope this will help you!

Miraj Shah - 1 year, 6 months ago

Log in to reply

This one helped me ;)

Swapnil Das - 1 year, 6 months ago

Log in to reply

virtual work is a really a god trick when you get fed up with constrains writing static equilibrium condition . virtual work principle state that when a body in static equilibrium is given a virtual displacement dx then net work done is 0.

Aryan Goyat - 1 year, 6 months ago

Log in to reply

it sounds too boring but its going to be interesting i found it to be useful. try this

a mass tied with a string in vertical plane with horizontal force acting find it if it is at angle theta with the vertical using virtual work method. (it s too easy)

Aryan Goyat - 1 year, 6 months ago

Log in to reply

just give a displacement d(theta) and let net work done =0

mg(-lsin(theta)d(theta)+F(lcos(theta)d(theta)=0

F=mgtan(theta)

{note-this may appear long this time but its time saving trick }

Aryan Goyat - 1 year, 6 months ago

Log in to reply

How is virtual tension work method for wedge pulley constraints different from pulleys?

Priyamvad Tripathi - 11 months ago

Log in to reply

Also can anybody please explain in brief about instantaneous axis of rotation.

Harsh Shrivastava - 1 year, 6 months ago

Log in to reply

It is the point about which the body appers to be in purely rotational motion (no translatory motion).

Deeparaj Bhat - 1 year, 6 months ago

Log in to reply

How to apply this concept in problem solving?

Harsh Shrivastava - 1 year, 6 months ago

Log in to reply

@Harsh Shrivastava You can figure out the ratios of veloties of certain points if you know their distance from the ICR and the angular velocity. Plus, you can calculate kinetic energy by knowing the moment of intertia about that point (you don't need to calculate translational kinetic energy).

Deeparaj Bhat - 1 year, 6 months ago

Log in to reply

Please reply and enlighten me.

Swapnil Das - 1 year, 6 months ago

Log in to reply

It basically says \(\displaystyle \sum \vec{T} \cdot \vec{a} = 0\) where \(T\) is the tension of the string and \(a\) is the acceleration of bodies in contact with it.

Deeparaj Bhat - 1 year, 6 months ago

Log in to reply

Could you add one example? Thanks.

Swapnil Das - 1 year, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...