Waste less time on Facebook — follow Brilliant.
×

Which is greater?

Define \(f(x)= \sum_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}\) and \(g(x)= \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}\), where \(x\) is a real number. Then which of \(f(x)\) or \(g(x)\) is greater for all \(x\)?

Note by Paramjit Singh
3 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Let us start by writing the Maclaurin Series for \(\displaystyle e^x\),
\(\displaystyle e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}\)
\(\displaystyle e^{-x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}\)

Thus,
\(\displaystyle f(x) = \frac{e^x-e^{-x}}{2}\), and

\(\displaystyle g(x) = \frac{e^x+e^{-x}}{2}\)

It is clear that, \(g(x)>f(x)\), as the \(\displaystyle e^{-x}\) term is added to the first term in \(\displaystyle g(x)\), whereas it is subtracted from the first term in \(\displaystyle f(x)\).

Anish Puthuraya - 3 years, 10 months ago

Log in to reply

Good.

Paramjit Singh - 3 years, 10 months ago

Log in to reply

\(f(x)\) is the power series for \(\sinh x\) and \(g(x)\) is the power series for \(\cosh x.\) Use the fact that \(g(x)-f(x)=\cosh x-\sinh x=e^{-x}>0\) for all \(x.\) Therefore, \(g(x)>f(x)\) for all \(x.\)

Anish's solution is good as well; I prefer using hyperbolic trig functions for these kind of series though.

Trevor B. - 3 years, 10 months ago

Log in to reply

Nice.

Paramjit Singh - 3 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...