Waste less time on Facebook — follow Brilliant.
×

Which number is bigger? \(e^7 - e\) or \( \frac{3758537274}{3435859} \)?

Note by Pi Han Goh
6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

They are the same to 17 digits: 1093.914876600000

So your calculator has to have more precision than that. I know which is larger, but don't have a helpful answer as to why, or why they are so close. I'm looking forward to further discussion...

Steven Perkins - 6 months ago

Log in to reply

Even 22/7 is close to pi but not to that much accuracy and precision as this number is close to 'e'

Terry Chadwick - 5 months, 4 weeks ago

Log in to reply

You can always construct rational numbers that are arbitrarily close to a given irrational number.

There are some specific cases where a rational number may have some basis in a series expansion or something else interesting. I haven't figured anything special out in this case, but I don't have much experience doing something like that.

I hope we'll get some more insight here eventually.

Steven Perkins - 5 months, 4 weeks ago

Log in to reply

@Steven Perkins And the larger the number of digits in a rational number the more accurate it's till a particular decimal place.

I agree that we will learn something interesting here. I am thankful to Mr. Pi Han Goh for posting this wonderful relationship.

Terry Chadwick - 5 months, 3 weeks ago

Log in to reply

I took the value of e till 6 decimal places and I observed that e was smaller than the rational no.

Though, it's a very close case and if we increase the value of decimal places of e, we might get closer look.

Unfortunately, my calculator isn't that advanced.

It's a great question and observation. I am eager to know the answer!

Terry Chadwick - 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...