Forgot password? New user? Sign up
Existing user? Log in
Which of the following represents the correct value of x xx if ∣8x∣+b>c, \lvert 8x \rvert + b > c, ∣8x∣+b>c, and c>b c>bc>b?
Solve for x x x:
x2−2x−3<3∣x−1∣. x^2 - 2x -3 < 3 |x-1|. x2−2x−3<3∣x−1∣.
If the solution set of the system of inequalities: {∣a+1∣<2∣b−1∣<12\begin{cases}\lvert a+1 \rvert < 2\\ \lvert b-1 \rvert <12 \end{cases}{∣a+1∣<2∣b−1∣<12 is x<a+b<y, x < a+b < y, x<a+b<y, what are xxx and y?y?y?
For all non-zero real numbers (x,y) (x, y) (x,y), which of the following is larger:
A=∣x∣1+∣x∣+∣y∣1+∣y∣ or B=∣x+y∣1+∣x+y∣? A = \frac{ |x| } { 1 + |x| } + \frac{ |y| } { 1 + |y| } \text{ or } B = \frac{ |x+y| } { 1 + |x+y| } ?A=1+∣x∣∣x∣+1+∣y∣∣y∣ or B=1+∣x+y∣∣x+y∣?
The inequality ∣2x+8∣+16<32 \lvert 2x+8 \rvert + 16 < 32 ∣2x+8∣+16<32 implies that a<x<b a < x < b a<x<b. What is b−a b-ab−a?
Problem Loading...
Note Loading...
Set Loading...