Algebra
# Absolute Value Inequalities

Solve for \( x \):

\[ x^2 - 2x -3 < 3 |x-1|. \]

For all non-zero real numbers \( (x, y) \), which of the following is larger:

\[ A = \frac{ |x| } { 1 + |x| } + \frac{ |y| } { 1 + |y| } \text{ or } B = \frac{ |x+y| } { 1 + |x+y| } ?\]

The inequality \( \lvert 2x+8 \rvert + 16 < 32 \) implies that \( a < x < b \). What is \( b-a\)?

×

Problem Loading...

Note Loading...

Set Loading...