Waste less time on Facebook — follow Brilliant.

Common Misconceptions (Algebra)

Arm yourself with the tools to be the king or queen of heady mathematical debates, like the age old question of whether 0.999.... = 1.

Level 2


What is the value of

\[ \large \sqrt{ ( \color{red} {- 8} ) ^ 2 } \hspace{.15cm} ? \]

\[\large \color{purple}a\color{red}x + \color{green}5\color{purple}b = \color{red}2\color{purple}a + \color{purple}b\color{green}q \\ \large\text{implies} \\
\large \color{red}x = \color{red}2 \text{ and } \color{green}q=\color{green}5\]

True or false:
For all real numbers, \(\color{purple}a, \color{purple}b, \color{red}x, \text{ and } \color{green}q\), the statement above must be true.

\[\begin{equation} \begin{split} \sqrt{-1}=&i \quad&\ldots(1) \\ \dfrac{1}{\sqrt{-1}}=&\dfrac{1}{i}\quad& \ldots(2) \\ \dfrac{\sqrt {1}}{\sqrt{-1}}=&\dfrac{1}{i} \quad &\ldots(3) \\ \sqrt{\dfrac{1}{-1}}=&\dfrac{1}{i} \quad &\ldots(4) \\ \sqrt{\dfrac{-1}{1}}=&\dfrac{1}{i}\quad &\ldots(5) \\ \dfrac{\sqrt{-1}}{1}=&\dfrac{1}{i} \quad &\ldots(6) \\ i=&\dfrac{1}{i} \quad& \ldots(7) \\ i^2=&1 \quad & \ldots (8) \\ -1=&1\quad & \ldots(9) \end{split} \end{equation}\]

Consider these steps above.

In which step is the (first) mistake committed?

True or False:

Given any two periodic functions, \(\color{red}{f(x)}\) and \(\color{blue}{g(x)}\), the function \(\color{purple}{h(x)} = \color{red}{f(x)} + \color{blue}{g(x)}\) will also be periodic with a period that is, at most, the product of the original two periods (the period of \(f(x)\) times the period of \(g(x)\)).

What is the value of

\[ \large \sqrt{ 1\%}? \]


Problem Loading...

Note Loading...

Set Loading...