Waste less time on Facebook — follow Brilliant.
Back to all chapters

Common Misconceptions (Algebra)

Arm yourself with the tools to be the king or queen of heady mathematical debates, like the age old question of whether 0.999.... = 1.

Algebra Common Misconceptions: Level 2 Challenges


What is the value of

\[ \large \sqrt{ ( \color{red} {- 8} ) ^ 2 } \hspace{.15cm} ? \]

\[\large {\color{purple}a}{\color{red}x} + {\color{green}5}{\color{purple}b} = {\color{red}2}{\color{purple}a} + {\color{purple}b}{\color{green}q} \\\\\\ \large \text{implies} \\\\\\ \large {\color{red}x} = {\color{red}2} \text{ and } {\color{green}q}={\color{green}5}.\]

True or false?

For all real numbers \({\color{purple}a}, {\color{purple}b}, {\color{red}x}, \text{ and } {\color{green}q}\), the statement above must be true.

\[\begin{equation} \begin{split} \sqrt{-1}=&i \quad&\ldots(1) \\ \dfrac{1}{\sqrt{-1}}=&\dfrac{1}{i}\quad& \ldots(2) \\ \dfrac{\sqrt {1}}{\sqrt{-1}}=&\dfrac{1}{i} \quad &\ldots(3) \\ \sqrt{\dfrac{1}{-1}}=&\dfrac{1}{i} \quad &\ldots(4) \\ \sqrt{\dfrac{-1}{1}}=&\dfrac{1}{i}\quad &\ldots(5) \\ \dfrac{\sqrt{-1}}{1}=&\dfrac{1}{i} \quad &\ldots(6) \\ i=&\dfrac{1}{i} \quad& \ldots(7) \\ i^2=&1 \quad & \ldots (8) \\ -1=&1\quad & \ldots(9) \end{split} \end{equation}\]

Consider these steps above.

In which step is the (first) mistake committed?

True or False:

Given any two periodic functions, \(\color{red}{f(x)}\) and \(\color{blue}{g(x)}\), the function \(\color{purple}{h(x)} = \color{red}{f(x)} + \color{blue}{g(x)}\) will also be periodic with a period that is, at most, the product of the original two periods (the period of \(f(x)\) times the period of \(g(x)\)).

What is the value of

\[ \large \sqrt{1\text{%}}\, ? \]


Problem Loading...

Note Loading...

Set Loading...