Sign up to access problem solutions.

Already have an account? Log in here.

Arithmetic puzzles are Mad Libs for math: fill in the blanks with numbers or operations to make the equation true.

\[ \large 1 \, \square \, 2 \, \square \, 3 \, \square \, 4 = 10 \]

There are \( 4^3 = 64 \) ways in which we can fill the squares with \( + , - , \times , \div \).

How many ways would make the equation true?

**Note:**

You are not allowed to use parenthesis.

Obey the order of operations.

Sign up to access problem solutions.

Already have an account? Log in here.

\[ \left(\color{green}{\square}5\right)^2 = \color{blue}{\square}25 \]

Each square above represents a positive integer. Let \(m\) and \(n\) denote the values that fill in the green and blue squares, respectively, satisfying the equation. Then what is the relationship between \(m \) and \(n?\)

**Details and Assumptions**:

- This is an arithmetic puzzle, where \( 1 \square \) would represent the 2-digit number 19 if \( \square = 9 \). It does not represent the algebraic expression \( 1 \times \square \).

Sign up to access problem solutions.

Already have an account? Log in here.

In the figure above, each letter represents a distinct single digit. They are positioned in such a way that \[ \large A\times B\times C=B\times G\times E=D\times E\times F. \]

What digit does the letter \(G\) represents?

Sign up to access problem solutions.

Already have an account? Log in here.

\[ \large \square + \square\square+\square\square\square+\square\square\square\square \]

Place each of the digits 0 through 9, without repetition, in the boxes above. Then what is the **maximum** possible sum?

**Details and Assumptions**:

- This is an arithmetic puzzle, where \( 1 \square \) would represent the 2-digit number 19 if \( \square = 9 \). It does not represent the algebraic expression \( 1 \times \square \).

Sign up to access problem solutions.

Already have an account? Log in here.

\[ \LARGE \square^{\square^{\square^{\square}}} \]

You are given that the numbers \(1,2,3,4\) are to be filled in the square boxes as shown above (without repetition). Of all \(4!=24\) possible arrangements, find the total possible arrangements of these numbers such that the resultant number is a minimum.

**Details and Assumptions**

As an explicit example, a possible value of the resultant number is \(\large 2^{3^{1^4}} = 8 \).

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...