Forgot password? New user? Sign up
Existing user? Log in
If ∫01f(x) dx=4 \int_0^1 f(x) \, dx = 4 ∫01f(x)dx=4, what is the value of
∫012f(x) dx? \int_0^1 2 f(x) \, dx ? ∫012f(x)dx?
If ∫01f(x) dx=2 \int_0^1 f(x) \, dx = 2 ∫01f(x)dx=2 and ∫01g(x) dx=6 \int_0^1 g(x) \, dx = 6 ∫01g(x)dx=6, what is the value of
∫01(6f(x)+2g(x)) dx? \int_0^1 \left( 6 f(x) + 2 g(x) \right) \, dx ? ∫01(6f(x)+2g(x))dx?
If ∫04f(x) dx=3 \int_0 ^ {4} f(x) \, dx = 3 ∫04f(x)dx=3, what is the value of
∫04(3−f(x)) dx? \int_0^{4} \left( 3 - f(x) \right) \, dx ? ∫04(3−f(x))dx?
If ∫010f(x) dx=27 \int_0^{10} f(x) \, dx = 27 ∫010f(x)dx=27 and ∫05f(x) dx=7 \int_0^5 f(x) \, dx = 7 ∫05f(x)dx=7, then what is the value of
∫510f(x) dx? \int_5^{10} f(x) \, dx ? ∫510f(x)dx?
Suppose f(x)f(x)f(x) is an odd function and g(x)g(x)g(x) is an even function such that
∫05f(x) dx=7∫515f(x) dx=8∫−50g(x) dx=1∫515g(x) dx=2 \int_0 ^ {5} f(x) \, dx = 7 \hspace{.6cm} \int_{5}^{15} f(x) \, dx = 8 \\ \int_{-5}^{0} g(x) \, dx = 1 \hspace{.6cm} \int_{5}^{15} g(x) \, dx = 2 ∫05f(x)dx=7∫515f(x)dx=8∫−50g(x)dx=1∫515g(x)dx=2
What is the value of ∫−515(f(x)+g(x)) dx? \int_{-5}^{15} \left( f(x) + g(x) \right) \, dx ? ∫−515(f(x)+g(x))dx?
Problem Loading...
Note Loading...
Set Loading...