Back to all chapters
# Chess

Chess is no joke: it has more possible sequences of moves than the number of atoms in the observable universe, but working through chess puzzles is a great way to gain insightful strategies.

A new piece in chess has been introduced. Instead of being like the knight, which moves two spaces horizontally and one space vertically or two spaces vertically and one space horizontally, the new piece moves **three** spaces horizontally and one space vertically or **three** spaces vertically and one space horizontally.

The piece is now on the square labelled "A". What is the least number of moves it needs to have to get to the square labelled "B"?

For reference, there are approximately \(10^{50} \) atoms in the earth

Two opposite corners are detached from the chess

Is it possible to make a path for a knight such that it visited all of the square once and only once? If yes, how many ways are there?

×

Problem Loading...

Note Loading...

Set Loading...