Algebra
# Completing The Square

The quadratic expression $x^2-18x+112$ can be rewritten as $(x-a)^2+b$. What is the value of $a+b?$

If $3x^2-6x+15=a(x-b)^2+c,$ what is the value of $a+b+c$?

If $\frac{1}{3}x^2+6x+10=\frac{1}{a}(x+b)^2-c,$ what is the value of $a+b+c$?

What do we get when we complete the square for

$-\frac{1}{2}x^2+5x+2?$

×

Problem Loading...

Note Loading...

Set Loading...