Waste less time on Facebook — follow Brilliant.
×
Algebra

Complex Numbers

Complex Numbers: Level 2 Challenges

         

What is

\[\large i^2 +i^6 +i^4?\]

Note: \(i\) is the imaginary number \(\sqrt{-1}\).

\[\displaystyle\sum_{n=0}^{1000} i^n=? \] where \(i=\sqrt{-1}\).

\[\large i{ z }^{ 3 }+z^{ 2 }-z+i=0\]

For \(i = \sqrt{-1}\), \(z\) is a complex number that satisfies the equation above. What is the value of \(\left| z \right| \)?

Evaluate

\[\large{ \frac { { (1+i) }^{ 85 } }{ { (1-i) }^{ 83 } }}\]

Hint: There's an extremely fast way to solve this if you know why
\(\large 1+i = \sqrt{2}e^{i{\pi}/{4}} \)

Can you evaluate this giant power of \(i\)?

\[\huge i^{-9999}\]

×

Problem Loading...

Note Loading...

Set Loading...