Waste less time on Facebook — follow Brilliant.
×

Cryptograms

Cryptograms are puzzles where some (or all) digits are missing from an arithmetic operation. Tinker with different combinations of numbers and letters to unlock the right answer. See more

Level 2

\[ \Large \begin{array} {c c c c } & & \color{purple}{X}& \color{purple}{X} \\ & & \color{red}{Y} & \color{red}{Y} \\
+ & & \color{blue}{Z} & \color{blue}{Z} \\
\hline & \color{purple}{X} & \color{red}{Y} & \color{blue}{Z} \\ \end{array} \]

If each letter represents a distinct digit, what is the value of the three-digit number \( \overline{XYZ}? \)

\[ \begin{array}{ccccc} & & & & A&B\\ \times & & & & A &A \\ \hline & & B & A & A &B \end{array} \]

Solve the above cryptogram. What is the first two-digit number in the product above, \(\overline{AB}\)?

\[ \begin{array} { l l l l l } & & & & & 9 & 9 & 9 \\ \times & & & & & A & B & C \\ \hline & & D & E & F & 1 & 3 & 2 \\ \end{array} \]

In this cryptogram, \(A,B,C,D,E\) and \(F\) are (not necessarily distinct) single digits. What is the value of \(A+B+C+D+E+F?\)

\[ \begin{array} { l l l l l } & S & E & N & D \\ + & M & O & R & E \\ \hline M & O & N & E & Y \\ \end{array} \]

In this cryptogram, each letter represents a distinct single digit positive integer except \(O\) which is equal to 0. Find the value of \(\overline{MONEY}.\)

\[ \large{\begin{array}{cccccc} & & & A & B & C&D\\ \times & & & & & &D\\ \hline & & & D& C & B&A\\ \end{array}} \]

Given that \(A,B,C\) and \(D\) are distinct single digit non-negative integers satisfying the cryptogram above, find \(A+B+C+D\).

×

Problem Loading...

Note Loading...

Set Loading...