×
Back to all chapters

# Cryptograms

Cryptograms are puzzles where some (or all) digits are missing from an arithmetic operation. Tinker with different combinations of numbers and letters to unlock the right answer.

# Cryptograms: Level 2 Challenges

$\Large \begin{array} {c c c c } & & \color{purple}{X}& \color{purple}{X} \\ & & \color{red}{Y} & \color{red}{Y} \\ + & & \color{blue}{Z} & \color{blue}{Z} \\ \hline & \color{purple}{X} & \color{red}{Y} & \color{blue}{Z} \\ \end{array}$

If each letter represents a distinct digit, what is the value of the three-digit number $$\overline{XYZ}?$$

$\begin{array}{ccccc} & & & & A&B\\ \times & & & & A &A \\ \hline & & B & A & A &B \end{array}$

Solve the above cryptogram. What is the first two-digit number in the product above, $$\overline{AB}$$?

Note: A number cannot start with 0, so A and B are non-zero.

$\begin{array} { l l l l l } & & & & & 9 & 9 & 9 \\ \times & & & & & A & B & C \\ \hline & & D & E & F & 1 & 3 & 2 \\ \end{array}$

In this cryptogram, $$A,B,C,D,E$$ and $$F$$ are (not necessarily distinct) single digits. What is the value of $$A+B+C+D+E+F?$$

$\begin{array} { l l l l l } & S & E & N & D \\ + & M & O & R & E \\ \hline M & O & N & E & Y \\ \end{array}$

In this cryptogram, each letter represents a distinct single digit positive integer except $$O$$ which is equal to 0. Find the value of $$\overline{MONEY}.$$

$\large{\begin{array}{cccccc} & & & A & B & C&D\\ \times & & & & & &D\\ \hline & & & D& C & B&A\\ \end{array}}$

Given that $$A,B,C$$ and $$D$$ are distinct single digit non-negative integers satisfying the cryptogram above, find $$A+B+C+D$$.

×