Forgot password? New user? Sign up
Existing user? Log in
What is the following derivative equal to? ddu[un+1(n+1)2⋅[(n+1)lnu−1]].\dfrac {d}{du} \left[ \dfrac {u^{n+1}}{(n+1)^2} \cdot \left[ (n+1) \ln u - 1 \right] \right]. dud[(n+1)2un+1⋅[(n+1)lnu−1]].
Are you sure you want to view the solution?
What is the value of the derivative of y=∣ln(x2)∣y = \left|\ln(x^2)\right|y=∣∣ln(x2)∣∣ at x=−12x = -\dfrac{1}{2}x=−21?
Above shows the derivative of sin(x)\sin(x) sin(x) by the first principle.
What's the derivative of sin(x∘)\sin(x^{\circ})sin(x∘)?
If ddxf(x)=g(x)\displaystyle\frac{d}{dx} f(x) = g(x)dxdf(x)=g(x) and ddxg(x)=f(x2)\displaystyle\frac{d}{dx}g(x) = f(x^2)dxdg(x)=f(x2), then d2dx2f(x3)= ?\displaystyle\frac{d^2}{dx^2}f(x^3) =\ ?dx2d2f(x3)= ?
(A)f(x6)(B)g(x3)(C)3x2g(x3)(D)9x4f(x6)+6xg(x3)(E)f(x6)+g(x3) \begin{aligned} (A) &\quad f\left(x^6\right) & (B)&\quad g\left(x^3\right)\\ (C) &\quad 3x^2 g\left(x^3\right) & (D) &\quad 9x^4 f\left(x^6\right)+6x g\left(x^3\right)\\ (E) &\quad f\left(x^6\right) + g\left(x^3\right) & & \end{aligned} (A)(C)(E)f(x6)3x2g(x3)f(x6)+g(x3)(B)(D)g(x3)9x4f(x6)+6xg(x3)
Credit: 1969 AP Calculus AB Exam
y=f(x),p=dydx,q=d2ydx2y = f(x), p = \dfrac{dy}{dx}, q = \dfrac{d^2y}{dx^2} y=f(x),p=dxdy,q=dx2d2y
What is d2xdy2 ? \dfrac{d^2x}{dy^2} \ ? dy2d2x ?
Problem Loading...
Note Loading...
Set Loading...