Sign up to access problem solutions.

Already have an account? Log in here.

The dot product (also known as the scalar product) is an operation on vectors that can tell you the angle between the vectors.

Sign up to access problem solutions.

Already have an account? Log in here.

Consider the regular octagon centered at the origin as shown above. Eight unit vectors are drawn from the center of the octagon to each of its vertices. For each pair of distinct unit vectors, the dot product is computed. What is the sum of all of these dot products?

Sign up to access problem solutions.

Already have an account? Log in here.

If a line makes angles \(\alpha\) , \(\beta\) , \(\gamma\) and \(\delta\) with the four body diagonals of a cube and the value of

\[\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) + \cos^2(\delta)\] can be expressed as \(\frac{p}{q}\), where \(p\) and \(q\) are coprime integers, find the value of \(p + q\).

\[\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) + \cos^2(\delta)\] can be expressed as \(\frac{p}{q}\), where \(p\) and \(q\) are coprime integers, find the value of \(p + q\).

**Clarification:** Body diagonals of a cube are the diagonals which do not lie along any face of the cube.

Sign up to access problem solutions.

Already have an account? Log in here.

Let \(a_1, \ldots, a_{16}\) be the list of \(2^4 = 16\) vectors which have 4 coordinates, whose values are either 0 or 1. What is the maximum possible value of \(a_1 \cdot a_2 + a_3 \cdot a_4 + \cdots + a_{15} \cdot a_{16}\)?

**Details and assumptions**

\( u \cdot v \) represents the dot product of vectors.

Examples of **vectors which have 4 coordinates and whose entries are either 0 or 1** are: \( (0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 0, 0) \).

The list is a set of all the 16 distinct vectors which satisfy the condition.

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...