Forgot password? New user? Sign up
Existing user? Log in
Solve the inequality 25x≥522−5x.2^{5x}\ge 5^{22-5x}.25x≥522−5x.
If the solution to the inequality 21−5x≤505x2 ^{1-5x} \le 50 ^{5x}21−5x≤505x is x≥k,x\ge k,x≥k, what is 1010k?10^{10k}?1010k?
Solve for x:x:x: 3−3x+12≤11.3^{-3x+12}\leq11.3−3x+12≤11.
Given that log2=0.301,\log2=0.301,log2=0.301, what is the largest integer xxx that satisfies 2x−3<102?2^{x-3}<10^{2}?2x−3<102?
Solve for x:x:x: 16x+2≥27−2x+3.16^{x+2}\geq27^{-2x+3}.16x+2≥27−2x+3.
Problem Loading...
Note Loading...
Set Loading...