Forgot password? New user? Sign up
Existing user? Log in
Solve the following for x:x:x: {3x>93x2≤274x.\left\{\begin{matrix} 3^x > 9 \\ 3^{x^2} \leq 27^{4x}. \end{matrix}\right.{3x>93x2≤274x.
What is the range of xxx that satisfies the inequality (149)x+4+(17)x+4>12? \left ( \frac{1}{49} \right )^{x+4} + \left ( \frac{1}{7} \right )^{x+4} > 12 ?(491)x+4+(71)x+4>12?
What is the range of xxx that satisfies the inequality (15)3+x<625<(125)x? \left(\frac{1}{5}\right)^{3+x} < 625 < \left( \frac{1}{25} \right)^x ?(51)3+x<625<(251)x?
Given log2=0.3010\log 2=0.3010log2=0.3010 and log3=0.4771,\log 3=0.4771,log3=0.4771, solve the inequality (27)x<(3x)6.\left(2 ^{7}\right)^x<\left(3 ^x\right)^{6}.(27)x<(3x)6.
Given n≥2,n \geq 2,n≥2, which of the following numbers is the largest: 6n−1n,6n+1n,6nn+1,6? \sqrt[n]{6^{n-1}}, \sqrt[n]{6^{n+1}}, \sqrt[n+1]{6^n},6 ?n6n−1,n6n+1,n+16n,6?
Problem Loading...
Note Loading...
Set Loading...